湖南省岳阳市汨罗市弼时片区2024年数学八年级下册期末教学质量检测试题含解析_第1页
湖南省岳阳市汨罗市弼时片区2024年数学八年级下册期末教学质量检测试题含解析_第2页
湖南省岳阳市汨罗市弼时片区2024年数学八年级下册期末教学质量检测试题含解析_第3页
湖南省岳阳市汨罗市弼时片区2024年数学八年级下册期末教学质量检测试题含解析_第4页
湖南省岳阳市汨罗市弼时片区2024年数学八年级下册期末教学质量检测试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省岳阳市汨罗市弼时片区2024年数学八年级下册期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在△ABC中,AB、AC的垂直平分线l1、l2相交于点O,若∠BAC等于82°,则∠OBC等于()A.8° B.9° C.10° D.11°2.已知三条线段长a、b、c满足a2=c2﹣b2,则这三条线段首尾顺次相接组成的三角形的形状是()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰直角三角形3.若代数式有意义,则实数x的取值范围是()A.x≥1 B.x≥2 C.x>1 D.x>24.某地2017年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2019年在2017年的基础上增加投入资金1600万元.设从2017年到2019年该地投入异地安置资金的年平均增长率为x,则下列方程正确的是()A.1280(1+x)=1600 B.1280(1+2x)=1600C.1280(1+x)2=2880 D.1280(1+x)+1280(1+x)2=28805.如图,已知,是的角平分线,,则点D到的距离是()A.3 B.4 C.5 D.66.有一个计算器,计算时只能显示1.41421356237十三位(包括小数点),现在想知道7后面的数字是什么,可以在这个计算器中计算下面哪一个值()A.10 B.10(-1) C.100 D.-17.用配方法解一元二次方程x2﹣4x+2=0,下列配方正确的是()A.(x+2)2=2 B.(x﹣2)2=﹣2 C.(x﹣2)2=2 D.(x﹣2)2=68.在某次实验中,测得两个变量m和v之间的4组对应数据如右表,则m与v之间的关系最接近于下列各关系式中的()m1234v2.014.910.0317.1A. B. C. D.9.在平面直角坐标系中,A,B,C三点坐标分别是(0,0),(4,0),(3,2),以A,B,C三点为顶点画平行四边形,则第四个顶点不可能在().A.第一象限 B.第二象限 C.第三象限 D.第四象限10.如图,PA、PB分别与⊙O相切于点A、B,若∠P=50°,则∠C的值是()A.50° B.55° C.60° D.65°二、填空题(每小题3分,共24分)11.若整数m满足,且,则m的值为___________.12.已知方程的一个根为2,则________.13.已知正方形的一条对角线长为cm,则该正方形的边长为__________cm.14.为了估计湖里有多少鱼,我们从湖里捕上150条鱼作上标记,然后放回湖里去,经过一段时间再捕上300条鱼,其中带标记的鱼有30条,则估计湖里约有鱼_______条.15.如图,在每个小正方形的边长为1的网格中,A,B,C,D均为格点.(Ⅰ)∠ABC的大小为_____(度);(Ⅱ)在直线AB上存在一个点E,使得点E满足∠AEC=45°,请你在给定的网格中,利用不带刻度的直尺作出∠AEC.16.(-4)2的算术平方根是________

64的立方根是

_______17.如图,一次函数y=kx+b与x轴、y轴分别交于A、B两点,则不等式kx+b﹣1>0的解集是_____.18.如图,香港特别行政区区徽由五个相同的花瓣组成,它是以一个花瓣为基本图案通过连续四次旋转所组成,这四次旋转中,旋转角度最小是______°.三、解答题(共66分)19.(10分)已知四边形ABCD是矩形,对角线AC和BD相交于点P,若在矩形的上方作△DEA,且使DE∥AC,AE∥BD.(1)求证:四边形DEAP是菱形;(2)若AE=CD,求∠DPC的度数.20.(6分)已知在中,是的中点,,垂足为,交于点,且.(1)求的度数;(2)若,,求的长.21.(6分)如图,四边形ABCD为矩形,C点在轴上,A点在轴上,D(0,0),B(3,4),矩形ABCD沿直线EF折叠,点B落在AD边上的G处,E、F分别在BC、AB边上且F(1,4).(1)求G点坐标(2)求直线EF解析式(3)点N在坐标轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,直接写出M点坐标;若不存在,请说明理由22.(8分)昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?23.(8分)如图1,已知正方形ABCD的边长为6,E是CD边上一点(不与点C重合),以CE为边在正方形ABCD的右侧作正方形CEFG,连接BF、BD、FD.(1)当点E与点D重合时,△BDF的面积为;当点E为CD的中点时,△BDF的面积为.(2)当E是CD边上任意一点(不与点C重合)时,猜想S△BDF与S正方形ABCD之间的关系,并证明你的猜想;

(3)如图2,设BF与CD相交于点H,若△DFH的面积为,求正方形CEFG的边长.24.(8分)如图1,直线与双曲线交于、两点,与轴交于点,与轴交于点,已知点、点.(1)求直线和双曲线的解析式;(2)将沿直线翻折,点落在第一象限内的点处,直接写出点的坐标;(3)如图2,过点作直线交轴的负半轴于点,连接交轴于点,且的面积与的面积相等.①求直线的解析式;②在直线上是否存在点,使得?若存在,请直接写出所有符合条件的点的坐标;如果不存在,请说明理由.25.(10分)《九章算术》“勾股”章有一题:“今有二人同所立,甲行率七,乙行率三.乙东行,甲南行十步而斜东北与乙会.问甲乙行各几何”.大意是说,已知甲、乙二人同时从同一地点出发,甲的速度为7,乙的速度为1.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲、乙各走了多远?26.(10分)学完第五章《平面直角坐标系》和第六章《一次函数》后,老师布置了这样一道思考题:已知:如图,在长方形ABCD中,BC=4,AB=2,点E为AD的中点,BD和CE相交于点P.求△BPC的面积.小明同学应用所学知识,顺利地解决了此题,他的思路是这样的:建立适合的“平面直角坐标系”,写出图中一些点的坐标.根据“一次函数”的知识求出点的坐标,从而可求得△BPC的面积.请你按照小明的思路解决这道思考题.

参考答案一、选择题(每小题3分,共30分)1、A【解析】

连接OA,根据三角形内角和定理求出∠ABC+∠ACB,根据线段垂直平分线的性质、等腰三角形的性质得到∠OAB=∠OBA,∠OAC=∠OCA,根据三角形内角和定理计算即可.【详解】解:连接OA,∵∠BAC=82°,∴∠ABC+∠ACB=180°﹣82°=98°,∵AB、AC的垂直平分线交于点O,∴OB=OA,OC=OA,∴∠OAB=∠OBA,∠OAC=∠OCA,∴∠OBC+∠OCB=98°﹣(∠OBA+∠OCA)=16°,∴∠OBC=8°,故选:A.【点睛】本题考查的是线段垂直平分线的性质、三角形内角和定理,掌握垂直平分线上任意一点,到线段两端点的距离相等是解题的关键.2、C【解析】

根据勾股定理的逆定理判断即可.【详解】∵三条线段长a、b、c满足a2=c2﹣b2,∴a2+b2=c2,即三角形是直角三角形,故选C.【点睛】本题考查了勾股定理的逆定理、等腰三角形的判定、等边三角形的判定、等腰直角三角形等知识点,能熟记勾股定理的逆定理的内容是解此题的关键.3、B【解析】

根据二次根式的被开方数为非负数以及分式的分母不为0可得关于x的不等式组,解不等式组即可得.【详解】由题意得,解得:x≥2,故选B.【点睛】本题考查了二次根式有意义的条件,分式有意义的条件,熟练掌握相关知识是解题的关键.4、C【解析】

根据2017年及2019年该地投入异地安置资金,即可列出关于x的一元二次方程.【详解】解:设从2017年到2019年该地投入异地安置资金的年平均增长率为x根据题意得:1280(1+x)2=1280+1600=2880.故选C.【点睛】本题主要考查一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.5、A【解析】

首先过点D作于E,由在中,是的角平分线,根据角平分线的性质,即可得.【详解】过点D作于E,∵在中,,即,∴是的角平分线,∴,∴点D到的距离为3,故选A.【点睛】本题考查了角平分线的性质,熟练掌握角的平分线上的点到角的两边的距离相等是解此题的关键.6、B【解析】由于计算器显示结果的位数有限,要想在原来显示的结果的右端再多显示一位数字,则应该设法去掉左端的数字“1”.对于整数部分不为零的数,计算器不显示位于左端的零.于是,先将原来显示的结果左端的数字“1”化为零,即计算.为了使该结果的整数部分不为零,再将该结果的小数点向右移动一位,即计算.这样,位于原来显示的结果左端的数字消失了,空出的一位由原来显示结果右端数字“7”的后一位数字填补,从而实现了题目的要求.根据以上分析,为了满足要求,应该在这个计算器中计算的值.故本题应选B.点睛:本题综合考查了计算器的使用以及小数的相关知识.本题解题的关键在于理解计算器显示数字的特点和规律.本题的一个难点在于如何构造满足题目要求的算式.解题过程中要注意,只将原结果的左端数字化为零并不一定会让这个数字消失.只有当整数部分不为零时,左端的零才不显示.另外,对于本题而言,将结果的小数点向右移动是为了使该结果的整数部分不为零,要充分理解这一原理.7、C【解析】

按照配方法的步骤:移项,配方(方程两边都加上4),即可得出选项.【详解】解:x2﹣4x+2=0,x2﹣4x=﹣2,x2﹣4x+4=﹣2+4,(x﹣2)2=2,故选:C.【点睛】本题主要考查配方法,掌握完全平方公式是解题的关键.8、B【解析】

根据表格得到对应v的大致取值,找到规律即可求解.【详解】根据表格可得到m,v的大致值为m=1时,v=12+1,m=2时,v=22+1,m=3时,v=32+1,m=4时,v=42+1,故最接近故选B.【点睛】此题主要考查函数的解析式,解题的关键是根据题意发现规律进行求解.9、C【解析】A点在原点上,B点在横轴上,C点在第一象限,根据平行四边形的性质:两组对边分别平行,可知第四个顶点可能在第一、二、四象限,不可能在第三象限,故选C10、D【解析】

连接OA、OB,由已知的PA、PB与圆O分别相切于点A、B,根据切线的性质得到OA⊥AP,OB⊥PB,从而得到∠OAP=∠OBP=90°,然后由已知的∠P的度数,根据四边形的内角和为360°,求出∠AOB的度数,最后根据同弧所对的圆周角等于它所对圆心角度数的一半即可得到∠C的度数.【详解】解:连接OA、OB,

∵PA、PB与圆O分别相切于点A、B,

∴OA⊥AP,OB⊥PB,

∴∠OAP=∠OBP=90°,又∠P=50°,

∴∠AOB=360°-90°-90°-50°=130°,

又∵∠ACB和∠AOB分别是弧AB所对的圆周角和圆心角,

∴∠C=∠AOB=×130°=65°.

故选:D.【点睛】此题考查了切线的性质,以及圆周角定理.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题,同时要求学生掌握同弧所对的圆周角等于所对圆心角的一半.二、填空题(每小题3分,共24分)11、,,.【解析】

由二次根式的性质,得到,结合,即可求出整数m的值.【详解】解:∵,∴,∴,∵,∴,∴整数m的值为:,,;故答案为:,,.【点睛】本题考查了二次根式的性质,以及解一元一次不等式,解题的关键是熟练掌握二次根式的性质,正确得到m的取值范围.12、【解析】

把x=2代入原方程,得到一个关于k的方程,求解可得答案.【详解】解:把x=2代入方程3x2+kx-2=0得3×4+2k-2=0,

解得k=-1.

故答案为-1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.13、【解析】

根据正方形性质可知:正方形的一条角平分线即为对角线,对角线和正方形的两条相邻的边构成等腰直角三角形,根据勾股定理可得正方形的周长.【详解】解:∵正方形的对角线长为2,设正方形的边长为x,∴2x²=(2)²解得:x=2∴正方形的边长为:2故答案为2.【点睛】本题考查了正方形的性质,解题的关键是明确正方形的对角线和正方形的两条相邻的边构成等腰直角三角形.14、1500【解析】

300条鱼里有30条作标记的,则作标记的所占的比例是30÷300=10%,即所占比例为10%.而有标记的共有150条,据此比例即可解答.【详解】150÷(30÷300)=1500(条).故答案为:1500【点睛】本题考查的是通过样本去估计总体.15、90.【解析】

(Ⅰ)如图,根据△ABM是等腰直角三角形,即可解决问题;(Ⅱ)构造正方形BCDE即可.【详解】(Ⅰ)如图,∵△ABM是等腰直角三角形,∴∠ABM=90°(Ⅱ)构造正方形BCDE,∠AEC即为所求;故答案为90【点睛】本题考查作图-应用与设计,解题的关键是寻找特殊三角形或特殊四边形解决问题16、4,4【解析】【分析】根据算术平方根和立方根的意义可求解.【详解】因为42=16,43=64,所以,(-4)2的算术平方根是4,

64的立方根是4.故答案为:(1).4,(2).4【点睛】本题考核知识点:算术平方根,立方根.解题关键点:理解算术平方根,立方根的定义.17、x<1【解析】

由一次函数y=kx+b的图象过点(1,1),且y随x的增大而减小,从而得出不等式kx+b﹣1>1的解集.【详解】由一次函数的图象可知,此函数是减函数,即y随x的增大而减小,∵一次函数y=kx+b的图象与y轴交于点(1,1),∴当x<1时,有kx+b﹣1>1.故答案为x<1【点睛】本题考查的是一次函数与一元一次不等式,能利用数形结合求出不等式的解集是解答此题的关键.18、72【解析】试题解析:观察图形可知,中心角是由五个相同的角组成,∴旋转角度是∴这四次旋转中,旋转角度最小是故答案为72.三、解答题(共66分)19、(1)见解析;(2)∠DPC=60°.【解析】试题分析:(1)由题中由已知条件可得其为平行四边形,再加上一组邻边相等即为菱形.(2)由(1)中的结论即可证明△PDC为等边三角形,从而得出∠DPC=60°.试题解析:(1)∵DE∥AC,AE∥BD,∴四边形DEAP为平行四边形,∵ABCD为矩形,∴AP=AC,DP=BD,AC=BD,∴AP=PD,PD=CP,∴四边形DEAP为菱形;∵四边形DEAP为菱形,∴AE=PD,∵AE=CD,∴PD=CD,∵PD=CP(上小题已证),∴△PDC为等边三角形,∴∠DPC=60°.考点:菱形的判定.20、(1)90°(1)1.4【解析】

(1)连接CE,根据线段垂直平分线的性质转化线段BE到△AEC中,利用勾股定理的逆定理可求∠A度数;(1)设AE=x,则AC可用x表示,在Rt△ABC中利用勾股定理得到关于x的方程求解AE值.【详解】(1)连接CE,∵D是BC的中点,DE⊥BC,∴CE=BE.∵BE1−AE1=AC1,∴AE1+AC1=CE1.∴△AEC是直角三角形,∠A=90°;(1)在Rt△BDE中,BE==2.所以CE=BE=2.设AE=x,则在Rt△AEC中,AC1=CE1−AE1,所以AC1=12−x1.∵BD=4,∴BC=1BD=3.在Rt△ABC中,根据BC1=AB1+AC1,即64=(2+x)1+12−x1,解得x=1.4.即AE=1.4.【点睛】本题主要考查了勾股定理及其逆定理,解题的关键是利用勾股定理求解线段长度,选择直角三角形借助勾股定理构造方程是解这类问题通用方法.21、(1)G(0,4-);(2);(3).【解析】

1(1)由F(1,4),B(3,4),得出AF=1,BF=2,根据折叠的性质得到GF=BF=2,在Rt△AGF中,利用勾股定理求出,那么OG=OA-AG=4-,于是G(0,4-);(2)先在Rt△AGF中,由,得出∠AFG=60°,再由折叠的性质得出∠GFE=∠BFE=60°,解Rt△BFE,求出BE=BFtan60°=2,那么CE=4-2,E(3,4-2).设直线EF的表达式为y=kx+b,将E(3,4-2),F(1,4)代入,利用待定系数法即可求出直线EF的解析.(3)因为M、N均为动点,只有F、G已经确定,所以可从此入手,结合图形,按照FG为一边,N点在x轴上;FG为一边,N点在y轴上;FG为对角线的思路,顺序探究可能的平行四边形的形状.确定平行四边形的位置与形状之后,利用平行四边形及平移的性质求得M点的坐标.【详解】解:(1)∵F(1,4),B(3,4),∴AF=1,BF=2,由折叠的性质得:GF=BF=2,在Rt△AGF中,由勾股定理得,∵B(3,4),∴OA=4,∴OG=4-,∴G(0,4-);(2)在Rt△AGF中,∵,∴∠AFG=60°,由折叠的性质得知:∠GFE=∠BFE=60°,在Rt△BFE中,∵BE=BFtan60°=2,.CE=4-2,.E(3,4-2).设直线EF的表达式为y=kx+b,∵E(3,4-2),F(1,4),∴解得∴;(3)若以M、N、F、G为顶点的四边形是平行四边形,则分如下四种情况:①FG为平行四边形的一边,N点在x轴上,GFMN为平行四边形,如图1所示.过点G作EF的平行线,交x轴于点N1,再过点N:作GF的平行线,交EF于点M,得平行四边形GFM1N1.∵GN1∥EF,直线EF的解析式为∴直线GN1的解析式为,当y=0时,.∵GFM1N1是平行四边形,且G(0,4-),F(1,4),N1(,0),∴M,(,);②FG为平行四边形的一边,N点在x轴上,GFNM为平行四边形,如图2所示.∵GFN2M2为平行四边形,∴GN₂与FM2互相平分.∴G(0,4-),N2点纵坐标为0∴GN:中点的纵坐标为,设GN₂中点的坐标为(x,).∵GN2中点与FM2中点重合,∴∴x=∵.GN2的中点的坐标为(),.∴N2点的坐标为(,0).∵GFN2M2为平行四边形,且G(0,4-),F(1,4),N2(,0),∴M2();③FG为平行四边形的一边,N点在y轴上,GFNM为平行四边形,如图3所示.∵GFN3M3为平行四边形,.∴GN3与FM3互相平分.∵G(0,4-),N2点横坐标为0,.∴GN3中点的横坐标为0,∴F与M3的横坐标互为相反数,∴M3的横坐标为-1,当x=-1时,y=,∴M3(-1,4+2);④FG为平行四边形的对角线,GMFN为平行四边形,如图4所示.过点G作EF的平行线,交x轴于点N4,连结N4与GF的中点并延长,交EF于点M。,得平行四边形GM4FN4∵G(0,4-),F(1,4),∴FG中点坐标为(),∵M4N4的中点与FG的中点重合,且N4的纵坐标为0,.∴M4的纵坐标为8-.5-45解方程,得∴M4().综上所述,直线EF上存在点M,使以M,N,F,G为顶点的四边形是平行四边形,此时M点坐标为:。【点睛】本题是一次函数的综合题,涉及到的考点包括待定系数法求一次函数的解析式,矩形、平行四边形的性质,轴对称、平移的性质,勾股定理等,对解题能力要求较高.难点在于第(3)问,这是一个存在性问题,注意平行四边形有四种可能的情形,需要一一分析并求解,避免遗漏.22、(1)y=﹣96x+192(0≤x≤2);(2)下午4时.【解析】试题分析:(1)可设线段AB所表示的函数关系式为:y=kx+b,根据待定系数法列方程组求解即可;(2)先根据速度=路程÷时间求出小明回家的速度,再根据时间=路程÷速度,列出算式计算即可求解.试题解析:(1)设线段AB所表示的函数关系式为:y=kx+b,依题意有:,解得.故线段AB所表示的函数关系式为:y=﹣96x+192(0≤x≤2);(2)12+3﹣(7+6.6)=15﹣13.6=1.4(小时),112÷1.4=80(千米/时),(192﹣112)÷80=80÷80=1(小时),3+1=4(时).答:他下午4时到家.考点:一次函数的应用.23、(1)1,1;(2)S△BDF=S正方形ABCD,证明见解析;(3)2【解析】

(1)根据三角形的面积公式求解;(2)连接CF,通过证明BD∥CF,可得S△BDF=S△BDC=S正方形ABCD;(3)根据S△BDF=S△BDC可得S△BCH=S△DFH=,由三角形面积公式可求CH,DH的长,再由三角形面积公式求出EF的长即可.【详解】(1)∵当点E与点D重合时,

∴CE=CD=6,

∵四边形ABCD,四边形CEFG是正方形,

∴DF=CE=AD=AB=6,

∴S△BDF=×DF×AB=1,当点E为CD的中点时,如图,连接CF,∵四边形ABCD和四边形CEFG均为正方形;

∴∠CBD=∠GCF=25°,

∴BD∥CF,

∴S△BDF=S△BDC=S正方形ABCD=×6×6=1,故答案为:1,1.(2)S△BDF=S正方形ABCD,证明:连接CF.∵四边形ABCD和四边形CEFG均为正方形;∴∠CBD=∠GCF=25°,∴BD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论