版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖南省衡阳市八中学八年级数学第二学期期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.若关于x的分式方程的解为x=2,则m的值为().A.2 B.0 C.6 D.42.下列数学符号中,属于中心对称图形的是()A. B. C. D.3.如图,已知▱ABCD的周长为20,∠ADC的平分线DE交AB于点E,若AD=4,则BE的长为()A.1 B.1.5 C.2 D.34.小明在画函数(>0)的图象时,首先进行列表,下表是小明所列的表格,由于不认真列错了一个不在该函数图象上的点,这个点是A. B. C. D.5.在平行四边形ABCD中,∠A:∠B:∠C:∠D的可能情况是()A.2:7:2:7 B.2:2:7:7 C.2:7:7:2 D.2:3:4:56.如图,这组数据的组数与组距分别为()A.5,9 B.6,9C.5,10 D.6,107.下列各组数据中,能作为直角三角形三边长的是()A.4,5,6 B.5,12,13 C.6,7,8 D.8,9,108.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,假设每分的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图.则每分钟的进水量与出水量分别是()A.5、2.5 B.20、10 C.5、3.75 D.5、1.259.小刚以400m/min的速度匀速骑车5min,在原地休息了6min,然后以500m/min的速度骑回出发地,小刚与出发地的距离s(km)关于时间t(min)的函数图象是A. B. C. D.10.如果多项式x2+kx+49能分解成(x-7)2的形式,那么k的值为()A.7 B.-14 C.±7 D.±14二、填空题(每小题3分,共24分)11.在一次数学活动课上,老师让同学们借助一副三角板画平行线AB,下面是小楠、小曼两位同学的作法:老师说:“小楠、小曼的作法都正确”请回答:小楠的作图依据是______;小曼的作图依据是______.12.不等式3x+1<-2的解集是________.13.在函数y=中,自变量x的取值范围是_____.14.如图,矩形边,,沿折叠,使点与点重合,点的对应点为,将绕着点顺时针旋转,旋转角为.记旋转过程中的三角形为,在旋转过程中设直线与射线、射线分别交于点、,当时,则的长为_______.15.已知若关于x的分式方程有增根,则__________.16.如图,点、分别是平行四边形的两边、的中点.若的周长是30,则的周长是_________.17.《九章算术》是我国最重要的数学著作之一,其中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何”.译文大意是:“有一根竹子高一丈(十尺),竹梢部分折断,尖端落在地上,竹尖与竹根的距离三尺,问竹干还有多高”,若设未折断的竹干长为x尺,根据题意可列方程为_____.18.如图,把正方形AOBC放在直角坐标系内,对角线AB、OC相交于点D.点C的坐标是(-4,4),将正方形AOBC沿x轴向右平移,当点D落在直线y=-2x+4上时,线段AD扫过的面积为_______.三、解答题(共66分)19.(10分)探究:如图,分别以△ABC的两边AB和AC为边向外作正方形ANMB和正方形ACDE,NC、BE交于点P.求证:∠ANC=∠ABE.应用:Q是线段BC的中点,若BC=6,则PQ=.20.(6分)我们新定义一种三角形:两边平方和等于第三边平方的4倍的三角形叫做常态三角形.例如:某三角形三边长分别是5,6和8,因为,所以这个三角形是常态三角形.(1)若三边长分别是2,和4,则此三角形常态三角形(填“是”或“不是”;(2)如图,中,,,点为的中点,连接,若是常态三角形,求的面积.21.(6分)为传播“绿色出行,低碳生活”的理念,小贾同学的爸爸从家里出发,骑自行车去图书馆看书,图1表达的是小贾的爸爸行驶的路程(米)与行驶时间(分钟)的变化关系(1)求线段BC所表达的函数关系式;(2)如果小贾与爸爸同时从家里出发,小贾始终以速度120米/分钟行驶,当小贾与爸爸相距100米是,求小贾的行驶时间;(3)如果小贾的行驶速度是米/分,且在途中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出的取值范围。22.(8分)如图,过点A的一次函数的图象与正比例函数y=2x的图象相交于点B.(1)求该一次函数的解析式;(2)若该一次函数的图象与x轴交于点D,求△BOD的面积.23.(8分)城市到城市的铁路里程是300千米.若旅客从城市到城市可选择高铁和动车两种交通工具,高铁速度是动车速度的1.5倍,时间相差0.5小时,求高铁的速度.24.(8分)如图,在边长为的正方形四个角上,分别剪去大小相等的等腰直角三角形,当三角形的直角边由小变大时,阴影部分的面积也随之发生变化,它们的变化情况如下:三角形的直角边长/12345678910阴影部分的面积/398392382368350302272200(1)在这个变化过程中,自变量、因变量各是什么?(2)请将上述表格补充完整;(3)当等腰直角三角形的直角边长由增加到时,阴影部分的面积是怎样变化的?(4)设等腰直角三角形的直角边长为,图中阴影部分的面积为,写出与的关系式.25.(10分)已知:如图,AD是△ABC的中线,E为AD的中点,过点A作AF∥BC交BE延长线于点F,连接CF.(1)如图1,求证:四边形ADCF是平行四边形;(2)如图2,连接CE,在不添加任何辅助线的情况下,请直接写出图2中所有与△BDE面积相等的三角形.26.(10分)如图,在矩形ABCD中,E是AB的中点,连接DE、CE.(1)求证:△ADE≌△BCE;(2)若AB=6,AD=4,求△CDE的周长.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
根据分式方程的解为x=2,把x=2代入方程即可求出m的值.【详解】解:把x=2代入得,,解得m=6.故选C.点睛:本题考查了分式方程的解,熟练掌握方程解得定义是解答本题的关键.2、B【解析】
根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3、C【解析】
只要证明AD=AE=4,AB=CD=6即可解决问题.【详解】∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC=4,AB=CD=6,∴∠AED=∠CDE,∵DE平分∠ADC,∴∠ADE=∠EDC,∴∠ADE=∠AED,∴AD=AE=4,∴EB=AB﹣AE=6﹣4=1.故选:C.【点睛】此题考查了平行四边形的性质,等腰三角形的判定等知识,熟练掌握平行四边形的性质是解本题的关键.4、D【解析】
首先将各选项代入计算看是否在直线上即可.【详解】A选项,当代入故在直线上.B选项,当代入故在直线上.C选项,当代入故在直线上.D选项,当代入故不在直线上.故选D.【点睛】本题主要考查直线上的点满足直线方程,是考试的基本知识,应当熟练掌握.5、A【解析】
由四边形ABCD是平行四边形,根据平行四边形的对角相等,即可求得答案.【详解】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∴∠A:∠B:∠C:∠D的可能情况是2:1:2:1.故选:A.【点睛】此题考查了平行四边形的性质.此题比较简单,注意掌握平行四边形的对角相等定理的应用.6、D【解析】
通过观察频率分布直方图,发现一共分为6组,每一组的最大值和最小值的差都是10,做出判断.【详解】解:频率分布直方图中共有6个直条,故组数是6,每组的最大值和最小值的差都是10,因此组距是10,故选:D.【点睛】考查频率分布直方图的制作方法,明确组距、组数的意义是绘制频率分布直方图的两个基本的步骤.7、B【解析】
欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】A、∵42+52=41≠62,∴不能作为直角三角形三边长,故本选项错误;B、∵52+122=169=132,∴能作为直角三角形三边长,故本选项正确;C、∵62+72=85≠82,∴不能作为直角三角形三边长,故本选项错误;D、∵82+92=141≠102,∴不能作为直角三角形三边长,故本选项错误.故选B.【点睛】本题考查了勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.8、C【解析】试题分析:∵t=4时,y=20,∴每分钟的进水量==5(升);∴4到12分钟,8分钟的进水量=8×5=40(升),而容器内的水量只多了30升-20升=10升,∴8分钟的出水量=40升-10升=30升,∴每分钟的进水量==3.75(升).故选C.考点:一次函数的应用.9、C【解析】【分析】根据题意分析在各个时间段小刚离出发点的距离,结合图象可得出结论.【详解】由已知可得,前5min小刚与出发地相距2千米,后6min距离不变,之后距离逐渐减少.故选项C符合实际情况.故选:C【点睛】本题考核知识点:函数的图形.解题关键点:结合实际分析函数图像.10、B【解析】
利用完全平方公式的结构特征判断即可确定出k的值.【详解】解:∵x2+kx+49=(x-7)2,
∴k=2×1×(-7)=-14,
故选:B.【点睛】此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.二、填空题(每小题3分,共24分)11、同位角相等,两直线平行或垂直于同一直线的两条直线平行内错角相等,两直线平行【解析】
由平行线的判定方法即可得到小楠、小曼的作图依据.【详解】解:∵∠B=∠D=90°,∴AB//CD(同位角相等,两直线平行);∵∠ABC=∠DCB=90°,∴AB//CD(内错角相等,两直线平行),故答案为:同位角相等,两直线平行(或垂直于同一直线的两条直线平行);内错角相等,两直线平行.【点睛】本题考查了作图-复杂作图和平行线的判定方法,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.12、x<-1.【解析】试题分析:3x+1<-2,3x<-3,x<-1.故答案为x<-1.考点:一元一次不等式的解法.13、x≥﹣2且x≠1【解析】分析:根据使分式和二次根式有意义的条件进行分析解答即可.详解:∵要使y=有意义,∴,解得:且.故答案为:且.点睛:熟记:“二次根式有意义的条件是:被开方数是非负数;分式有意义的条件是:分母的值不为0”是正确解答本题的关键.14、【解析】
设AE=x=FC=FG,则BE=ED=8-x,根据勾股定理可得:x=,进而确定BE、EF的长,再由折叠性质可得∠BEF=∠DEF=∠BFE和∠DEF=∠NME=∠F',可证四边形BEMF'为平行四边形,进而得到平行四边形BEMF'为菱形,由菱形的性质可得EM=BE,最后由即可解答.【详解】解:如图:AE=x=FC=FG,则,在中,有,即,解得,,,由折叠的性质得,,,,,四边形为平行四边形,由旋转的性质得:,,平行四边形为菱形,,.【点睛】本题考查了旋转的性质、勾股定理、矩形的性质、菱形的判定、平行四边形的判定等知识;考查知识点多,增加了试题的难度,其中证得四边形BEMF'是菱形是解答本题的关键.15、1【解析】
增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x-2=0,所以增根是x=2,把增根代入化为整式方程的方程即可求出未知字母的值.【详解】方程两边都乘(x-2),得1+(x-2)=k∵原方程有增根,∴最简公分母x-2=0,即增根是x=2,把x=2代入整式方程,得k=1.故答案为1.【点睛】增根问题可按如下步骤进行:①根据最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.16、15【解析】
根据平行四边形与中位线的性质即可求解.【详解】∵四边形ABCD为平行四边形,的周长是30,∴△ADC的周长为30,∵点、分别是平行四边形的两边、的中点.∴DE=AD,DF=CD,EF=AC,∴则的周长=×30=15.【点睛】此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的性质及中位线的性质.17、x1+31=(10﹣x)1【解析】
根据勾股定理即可得出结论.【详解】设未折断的竹干长为x尺,根据题意可列方程为:x1+31=(10−x)1.故答案为:x1+31=(10−x)1.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.18、1【解析】
根据题意,线段AD扫过的面积应为平行四边形的面积,其高是点D到x轴的距离,底为点C平移的距离,求出点C的横坐标坐标及当点C落在直线y=-2x+4上时的横坐标即可求出底的长度.【详解】解:∵四边形AOBC为正方形,对角线AB、OC相交于点D,又∵点C(-4,4),∴点D(-2,2),如图所示,DE=2,设正方形AOBC沿x轴向右平移,当点D落在直线y=-2x+4上的点为D´,则点D´的纵坐标为2,将纵坐标代入y=-2x+4,得2=-2x+4,解得x=1,∴DD´=1-(-2)=3由图知,线段AD扫过的面积应为平行四边形AA´D´D的面积,∴S平行四边形AA´D´D=DD´DE=3×2=1.故答案为1.【点睛】本题考查了正方形的性质,平移的性质,平行四边形的面积及一次函数的综合应用.解题的关键是明确线段AD扫过的面积应为平行四边形的面积.三、解答题(共66分)19、证明见解析,3【解析】
探究:根据正方形性质得出AN=AB,AC=AE,∠NAB=∠CAE=90°,求出∠NAC=∠BAE,证出△ANC≌△ABE即可;应用:先证明△BCP为直角三角形,然后,依据直角三角形斜边上的中线等于斜边的一半求解即可.【详解】证明:∵四边形ANMB和ACDE是正方形,∴AN=AB,AC=AE,∠NAB=∠CAE=90°,∵∠NAC=∠NAB+∠BAC,∠BAE=∠BAC+∠CAE,∴∠NAC=∠BAE,在△ANC和△ABE中,AN=AB,∠NAC=∠BAE,AC=AE∴△ANC≌△ABE(SAS),∴∠ANC=∠ABE.应用:如图所示,∵四边形NABM是正方形,∴∠NAB=90°,∴∠ANC+∠AON=90°,∵∠BOP=∠AON,∠ANC=∠ABE,∴∠ABP+∠BOP=90°,∴∠BPC=∠ABP+∠BOP=90°,∵Q为BC中点,BC=6,∴PQ=12BC=3【点睛】本题考查了三角形的外角性质,直角三角形斜边上中线性质,垂直定义,全等三角形的性质和判定,正方形性质的应用,关键是推出△ANC≌△ABE和推出∠BPC=90°.20、(1)是;(2)或.【解析】
(1)直接利用常态三角形的定义判断即可;(2)直接利用直角三角形的性质结合常态三角形的定义得出的长,进而求出答案.【详解】解:(1),三边长分别是2,和4,则此三角形是常态三角形.故答案为:是;(2)中,,,点为的中点,是常态三角形,当,时,解得:,则,故,则的面积为:.当,时,解得:,则,故,则的面积为:.故的面积为或.【点睛】此题主要考查了勾股定理、直角三角形斜边的中线等于斜边的一半以及新定义,正确应用勾股定理以及直角三角形的性质是解题关键.21、(1);(2)小贾的行驶时间为分钟或分钟;(3)【解析】
(1)结合图形,运用待定系数法即可得出结论;(2)设小贾的行驶时间为x分钟,根据题意列方程解答即可;(3)分别求出当OD过点B、C时,小贾的速度,结合图形,利用数形结合即可得出结论.【详解】(1)设线段BC所表达的函数关系式为y=kx+b,根据题意得,解得,∴线段BC所表达的函数关系式为y=200x-1500;(2)设小贾的行驶时间为x分钟,根据题意得150x-120x=100或1500-120x=100或120x-1500=100或120x-150(x-5)=100或150(x-5)-120x=100或3000-120x=100,解得x=或x=或x=或x=或x=或x=,即当小贾与爸爸相距100米时,小贾的行驶时间为分钟或分钟或分钟或分钟或分钟或分钟;(3)如图:当线段OD过点B时,小军的速度为1500÷15=100(米/分钟);当线段OD过点C时,小贾的速度为3000÷22.5=(米/分钟).结合图形可知,当100<v<时,小贾在途中与爸爸恰好相遇两次(不包括家、图书馆两地).【点睛】本题考查了一次函数的应用;熟练掌握一次函数的图象和性质是解决问题的关键.22、(1)y=﹣x+1;(2)△BOD的面积=1.【解析】
(1)先根据直线的方向判定一次函数解析式中k的符号,再根据直线经过点B(1,1),判断函数解析式即可;(2)求出D点的坐标,根据三角形的面积公式即可得到结论.【详解】把x=1代入y=2x得y=2∴直线经过点B(1,2)设直线AB的解析式为:y=kx+b∴∴∴该一次函数的解析式为y=﹣x+1;(2)当y=0时,x=1∴D(1,0)∴OD=1∴△BOD的面积=×1×2=1.【点睛】本题主要考查了两直线相交或平行问题,解题时注意:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.23、300千米/小时【解析】
设动车速度为千米/小时,则高铁速度为千米/小时,根据题意列出分式方程即可求解.【详解】设动车速度为千米/小时,则高铁速度为千米/小时,由题意,可列方程为.解得.经检验,.是原方程的根.所以高铁的速度为:千米/小时答:高铁的速度为300千米/小时.【点睛】此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系.24、(1)自变量:三角形的直角边长,因变量:阴影部分的面积;(2)见解析;(3).【解析】
(1)根据定义确定自变量、因变量即可;(2)根据题意计算即可;(3)观察数据表格确定阴影面积变化趋势;
(4)阴影面积为正方形面积减去四个等腰直角三角形面积.【详解】解:(1)在这个变化过程中,自变量:三角形的直角边长,因变量:阴影部分的面积;(2)等腰直角三角形直角边长为6时,阴影面积为202-4××62=328,
等腰直角三角形直角边长为9时,阴影面积为202-4××92=238;三角形的直角边长/12345678910阴影部分的面积/328238(3)当等腰直角三角形的直角边长由增加到时,阴影部分的面积由减小到;(4).故答案为:(1)自变量:三角形的直角边长,因变量:阴影部分的面积;(2)见
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度家具甲醛含量检测与维修合同范本3篇
- 2025年度混凝土工程合同风险评估与防范措施3篇
- 湖区环境治理行动方案模版(2篇)
- 二零二五年度教育机构担保合作协议3篇
- 二零二五年度按揭借款合同利率调整机制3篇
- 网络商城课课程设计
- 二零二五年度广告车租赁与品牌推广合作协议3篇
- 2025年十二岁生日演讲稿范文(2篇)
- 2025年度电子商务销售合同范本2篇
- 课题申报书:大学中学融通视域下拔尖创新人才早期培养评价标准体系构建的实证研究
- GB/T 5023.5-2008额定电压450/750 V及以下聚氯乙烯绝缘电缆第5部分:软电缆(软线)
- 2023年辽宁省交通高等专科学校高职单招(英语)试题库含答案解析
- GB/T 36127-2018玉雕制品工艺质量评价
- GB/T 304.3-2002关节轴承配合
- GB/T 23445-2009聚合物水泥防水涂料
- 漆画漆艺 第三章
- (完整版)100道凑十法练习题
- 光伏逆变器一课件
- 2023年上海师范大学辅导员招聘考试笔试题库及答案解析
- 严重精神障碍患者发病报告卡
- 《基础马来语》课程标准(高职)
评论
0/150
提交评论