版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年福建省平和县八年级下册数学期末质量跟踪监视模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.若二次根式有意义,则x的取值范围是()A.x≥-5 B.x>-5 C.x≥5 D.x>52.将点P(5,3)向左平移4个单位,再向下平移1个单位后,落在函数y=kx﹣2的图象上,则k的值为()A.k=2 B.k=4 C.k=15 D.k=363.若点P(﹣3+a,a)在正比例函数y=﹣x的图象上,则a的值是()A. B.﹣ C.1 D.﹣14.某学习小组9名学生参加“数学竞赛”,他们的得分情况如下表:人数(人)1341分数(分)80859095那么这9名学生所得分数的众数和中位数分别是()A.90,87.5 B.90,85 C.90,90 D.85,855.若,则的值是()A. B. C. D.6.如图,一次函数y=kx+b的图象与y轴交于点(0,1),则关于x的不等式kx+b>1的解集是()A.x>0 B.x<0 C.x>1 D.x<17.在实数范围内,下列判断正确的是()A.若,则m=n B.若,则a>bC.若,则a=b D.若,则a=b8.在Rt△ABC中,AC=BC,点D为AB中点.∠GDH=90°,∠GDH绕点D旋转,DG,DH分别与边AC,BC交于E,F两点.下列结论:①AE+BF=AC,②AE2+BF2=EF2,③S四边形CEDF=S△ABC,④△DEF始终为等腰直角三角形.其中正确的是()A.①②③④ B.①②③ C.①④ D.②③9.下列二次根式中,最简二次根式是()A. B. C. D.10.如图是一次函数y=kx+b的图象,则k、b的符号是()A.k>0,b<0 B.k<0,b>0 C.k<0,b<0 D.k>0,b>0二、填空题(每小题3分,共24分)11.如图是一次函数的y=kx+b图象,则关于x的不等式kx+b>0的解集为.12.在□ABCD中,∠A+∠C=80°,则∠B的度数等于_____________.13.若y=,则x+y=.14.如图,在中,,,,P为BC上一动点,于E,于F,M为EF的中点,则AM的最小为___.15.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3,则△ABC的周长是_______.16.若关于x的一元二次方程有实数根,且所有实数根均为整数,请写出一个符合条件的常数m的值:m=_____.17.若关于x的分式方程=2a无解,则a的值为_____.18.分式与的最简公分母是__________.三、解答题(共66分)19.(10分)国家规定“中小学生每天在校体育活动时间不低于1h”,为此,某市就“每天在校体育活动”时间的问题随机调查了辖区内320名初中学生,根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5h;B组:0.5h≤t<1h;C组:1h≤t<1.5h;D组:t≥1.5h请根据上述信息解答下列问题:(1)C组的人数是;(2)本次调查数据的中位数落在组内;(3)若该市辖区内约有32000名初中学生,请你估计其中达国家规定体育活动时间的人约有多少?20.(6分)2008年6月1日起,我国实施“限塑令”,开始有偿使用环保购物袋.为了满足市场需求,某厂家生产两种款式的布质环保购物袋,每天共生产4500个,两种购物袋的成本和售价如下表,设每天生产种购物袋个,每天共获利元.成本(元/个)售价(元/个)22.333.5(1)求出关于的函数解析式;(2)如果该厂每天最多投入成本10000元,那么每天最多获利多少元?21.(6分)已知四边形ABCD是菱形(四条边都相等的平行四边形).AB=4,∠ABC=60°,∠EAF的两边分别与边BC,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系为:.(2)如图2,当点E是线段CB上任意一点时(点E不与B,C重合),求证:BE=CF;(3)求△AEF周长的最小值.22.(8分)如图,在平面直角坐标系中,OA=OB=8,OD=1,点C为线段AB的中点(1)直接写出点C的坐标;(2)求直线CD的解析式;(3)在平面内是否存在点F,使得以A、C、D、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.23.(8分)化简与计算:(1);(2)24.(8分)如图,△ABC中,AB=10,BC=6,AC=8.(1)求证:△ABC是直角三角形;(2)若D是AC的中点,求BD的长.(结果保留根号)25.(10分)如图,矩形纸片中,已知,折叠纸片使边落在对角线上,点落在点处,折痕为,且,求线段的长.26.(10分)合肥某单位计划组织员工外出旅游,人数估计在10~25人之间.甲、乙两旅行社的服务质量都较好,且旅游的价格都是每人200元.该单位联系时,甲旅行社表示可以给予每位旅客7.5折优惠,乙旅行社表示可免去一带队领导的旅游费用,其他游客8折优惠.问该单位怎样选择,可使其支付的旅游总费用较少?
参考答案一、选择题(每小题3分,共30分)1、C【解析】【分析】根据二次根式有意义的条件:被开方数为非负数进行求解即可得.【详解】由题意得:x-5≥0,解得:x≥5,故选C.【点睛】本题考查了二次根式有意义的条件,熟知二次根式的被开方数为非负数是解题的关键.2、B【解析】
根据点的平移规律,得出平移后的点的坐标,将该点坐标代入y=kx﹣2中求k即可.【详解】将点P(5,3)向左平移1个单位,再向下平移1个单位后点的坐标为(1,2),将点(1,2)代入y=kx﹣2中,得k﹣2=2,解得k=1.故选B.【点睛】本题考查了一次函数图象上点的坐标特点,点的坐标平移规律.关键是找出平移后点的坐标.3、C【解析】
把点P坐标代入正比例函数解析式得到关于a的方程,解方程即可得.【详解】解:由题意得:a=﹣(-3+a),解得:a=1,故选C.【点睛】本题考查了正比例函数图象上点的坐标特征,熟知正比例函数图象上点的坐标一定满足正比例函数的解析式是解题的关键.4、C【解析】
根据中位数(按由小到大顺序排列,最中间位置的数)、众数(出现次数最多的数)的概念确定即可.【详解】解:90分出现了4次,出现次数最多,故众数为90;将9位同学的分数按从小到大排序为80,85,85,85,90,90,90,90,95,处于最中间的是90,故中位数是90.故答案为:C【点睛】本题考查了中位数和众数,准确理解两者的定义是解题的关键.5、B【解析】
解:故选:B.【点睛】本题考查同分母分式的加法运算.6、B【解析】
直接根据函数的图象与y轴的交点为(0,1)进行解答即可:【详解】解:由一次函数的图象可知,此函数是减函数,∵一次函数y=kx+b的图象与y轴交于点(0,1),∴当x<0时,关于x的不等式kx+b>1.故选B.7、D【解析】
根据实数的基本性质,逐个分析即可.【详解】A、根据绝对值的性质可知:两个数的绝对值相等,则这两个数相等或互为相反数,故选项错误;
B、平方大的,即这个数的绝对值大,不一定这个数大,如两个负数,故说法错误;
C、两个数可能互为相反数,如a=-3,b=3,故选项错误;
D、根据立方根的定义,显然这两个数相等,故选项正确.
故选:D.【点睛】考核知识点:实数的性质.理解算术平方根和立方根性质是关键.8、A【解析】
连接CD根据等腰直角三角形的性质就可以得出△ADE≌△CDF,就可以得出AE=CF,进而得出CE=BF,就有AE+BF=AC,由勾股定理就可以求出结论.【详解】连接CD,∵AC=BC,点D为AB中点,∠ACB=90°,
∴AD=CD=BD=AB.∠A=∠B=∠ACD=∠BCD=45°,∠ADC=∠BDC=90°.
∴∠ADE+∠EDC=90°,
∵∠EDC+∠FDC=∠GDH=90°,
∴∠ADE=∠CDF.
在△ADE和△CDF中,∴△ADE≌△CDF(ASA),
∴AE=CF,DE=DF,S△ADE=S△CDF.
∵AC=BC,
∴AC-AE=BC-CF,
∴CE=BF.
∵AC=AE+CE,
∴AC=AE+BF.
∵DE=DF,∠GDH=90°,
∴△DEF始终为等腰直角三角形.
∵CE1+CF1=EF1,
∴AE1+BF1=EF1.
∵S四边形CEDF=S△EDC+S△EDF,
∴S四边形CEDF=S△EDC+S△ADE=S△ABC.
∴正确的有①②③④.
故选A.【点睛】本题考查了等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,解题关键是证明△ADE≌△CDF.9、B【解析】
化简得到结果,即可做出判断.【详解】解:A、=,不是最简二次根式;
B、是最简二次根式;
C、=7,不是最简二次根式;
D、=,不是最简二次根式;
故选:B.【点睛】此题考查了最简二次根式,熟练掌握二次根式的化简公式是解本题的关键.10、D【解析】试题分析:根据一次函数的图像与性质,由图像向上斜,可知k>0,由与y轴的交点,可知b>0.故选:D点睛:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k<0,b<0,图像过二三四象限.二、填空题(每小题3分,共24分)11、x>﹣1.【解析】试题分析:根据一次函数的图像可知y随x增大而增大,因此可知不等式的解集为x>-1.考点:一次函数与一元一次不等式12、140°【解析】
根据平行四边形的性质可得∠A的度数,再利用平行线的性质解答即可.【详解】解:如图,∵四边形ABCD是平行四边形,∴∠A=∠C,AD∥BC,∵∠A+∠C=80°,∴∠A=40°,∵AD∥BC,∴∠A+∠B=180°,∴∠B=140°.故答案为:140°.【点睛】本题主要考查了平行四边形的性质和平行线的性质,属于应知应会题型,熟练掌握平行四边形的性质是解题关键.13、1.【解析】试题解析:∵原二次根式有意义,∴x-3≥0,3-x≥0,∴x=3,y=4,∴x+y=1.考点:二次根式有意义的条件.14、2.1.【解析】
解:在△ABC中,AB=6,AC=8,BC=10,∴∠BAC=90°,∵PE⊥AB,PF⊥AC,∴四边形AFPE是矩形,∴AM=AP,根据直线外一点到直线上任一点的距离,垂线段最短,即AP⊥BC时,AP最短,同样AM也最短,∴当AP⊥BC时,△ABP∽△CAB,∴∴∴AP最短时,AP=1.8∴当AM最短时,AM==2.1故答案为:2.1.15、41【解析】
证明△ABN≌△ADN,求得AD=AB=10,BN=DN,继而可和CD长,结合M为BC的中点判断MN是△BDC的中位线,从而得出CD长,再根据三角形周长公式进行计算即可得.【详解】在△ABN和△ADN中,,∴△ABN≌△ADN,∴BN=DN,AD=AB=10,又∵点M是BC中点,∴MN是△BDC的中位线,∴CD=2MN=6,故△ABC的周长=AB+BC+CD+AD=10+15+6+10=41,故答案为:41.【点睛】本题考查了全等三角形的判定与性质,三角形的中位线定理,等腰三角形的判定等,注意培养自己的敏感性,一般出现高、角平分线重合的情况,都需要找到等腰三角形.16、0(答案不唯一)【解析】
利用判别式的意义得到△=62-4m≥0,解不等式得到m的范围,在此范围内取m=0即可.【详解】△=62-4m≥0,解得m≤9;当m=0时,方程变形为x2+6x=0,解得x1=0,x2=-6,所以m=0满足条件.故答案为:0(答案不唯一).【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.17、1或【解析】分析:直接解分式方程,再利用当1-2a=0时,当1-2a≠0时,分别得出答案.详解:去分母得:x-3a=2a(x-3),整理得:(1-2a)x=-3a,当1-2a=0时,方程无解,故a=;当1-2a≠0时,x==3时,分式方程无解,则a=1,故关于x的分式方程=2a无解,则a的值为:1或.故答案为1或.点睛:此题主要考查了分式方程的解,正确分类讨论是解题关键.18、【解析】
先把分母分解因式,再根据最简公分母定义即可求出.【详解】解:第一个分母可化为(x-1)(x+1)
第二个分母可化为x(x+1)
∴最简公分母是x(x-1)(x+1).故答案为:x(x-1)(x+1)【点睛】此题的关键是利用最简公分母的定义:取各分母系数的最小公倍数与字母因式的最高次幂的积作最简公分母.三、解答题(共66分)19、(1)根C组的人数为140人;(2)调查数据的中位数落在C组;(3)达国家规定体育活动时间的人约有20000人.【解析】
(1)根据直方图可得总人数以及各小组的已知人数,进而根据其间的关系可计算C组的人数;
(2)根据中位数的概念,中位数应是第160、161人时间的平均数,分析可得答案;
(3)首先计算样本中达国家规定体育活动时间的频率,再进一步估计总体达国家规定体育活动时间的人数.【详解】解:(1)根据题意有:C组的人数为320﹣20﹣100﹣60=140;(2)根据中位数的概念,中位数应是第160、161人时间的平均数,分析可得其均在C组,故调查数据的中位数落在C组;(3)达国家规定体育活动时间的人数约占×100%=62.5%.所以,达国家规定体育活动时间的人约有32000×62.5%=20000(人).【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.20、(1);(2)1.【解析】解:(1)y=0.3x+0.5(4500-x)=-0.2x+2250(2)2x+3(4500-x)≤10000X≥3500因为y是x的一次函数,k=-0.2<0,y随x的增大而减小,当x=3500时y的值最小为1元。根据题意,利用(总获利=A个数×A单位获利+B个数×B单位获利),得到函数解析式,再根据(2)的题意可得到一个不等式,解不等式求出x的范围,再结合(1)中的函数式可得出x的具体数值.21、(1)AE=EF=AF;(2)详见解析;(3)6.【解析】
(1)结论AE=EF=AF.只要证明AE=AF即可证明△AEF是等边三角形;(2)欲证明BE=CF,只要证明△BAE≌△CAF即可;(3)根据垂线段最短可知;当AE⊥BC时,△AEF的周长最小;【详解】(1)AE=EF=AF.理由:如图1中,连接AC,∵四边形ABCD是菱形,∠B=60°,∴AB=BC=CD=AD,∠B=∠D=60°,∴△ABC,△ADC是等边三角形,∴∠BAC=∠DAC=60°∵BE=EC,∴∠BAE=∠CAE=30°,AE⊥BC,∵∠EAF=60°,∴∠CAF=∠DAF=30°,∴AF⊥CD,∴AE=AF(菱形的高相等)∴△AEF是等边三角形,∴AE=EF=AF.故答案为AE=EF=AF;(2)证明:如图2,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAF,在△BAE和△CAF中,∴△BAE≌△CAF(ASA)∴BE=CF.(3)由(1)可知△AEF是等边三角形,∴当AE⊥BC时,AE的长最小,即△AEF的周长最小,∵AE=EF=AF=2,∴△AEF的周长为6.【点睛】本题考查四边形综合题、菱形的性质、等边三角形的判定、全等三角形的判定和性质等知识,解题的关键是灵活应用这些知识解决问题,学会添加常用辅助线,属于中考压轴题.22、(1)点C的坐标为(4,4);(2)直线CD的解析式是y=;(3)点F的坐标是(11,4),(5,-4)或(-3,4).【解析】
(1)由OA,OB的长度可得出点A,B的坐标,结合点C为线段AB的中点可得出点C的坐标;
(2)由OD的长度可得出点D的坐标,根据点C,D的坐标,利用待定系数法可求出直线CD的解析式;
(3)设点F的坐标为(m,n),分AC为对角线、AD为对角线及CD为对角线三种情况,利用平行四边形的对角线互相平分可得出关于m,n的二元一次方程组,解之即可得出点F的坐标.【详解】(1)∵OA=OB=8,点A在x轴正半轴,点B在y轴正半轴,∴点A的坐标为(8,0),点B的坐标为(0,8).又∵点C为线段AB的中点,∴点C的坐标为(4,4).(2)∵OD=1,点D在x轴的正半轴,∴点D的坐标为(1,0).设直线CD的解析式为y=kx+b(k≠0),将C(4,4),D(1,0)代入y=kx+b,得:,解得:,∴直线CD的解析式是y=.(3)存在点F,使以A、C、D、F为点的四边形为平行四边形,设点F的坐标为(m,n).分三种情况考虑,如图所示:①当AC为对角线时,∵A(8,0),C(4,4),D(1,0),∴,解得:,∴点F1的坐标为(11,4);②当AD为对角线时,∵A(8,0),C(4,4),D(1,0),∴,解得:,∴点F2的坐标为(5,-4);③当CD为对角线时,∵A(8,0),C(4,4),D(1,0),∴,解得:,∴点F3的坐标为(-3,4).综上所述,点F的坐标是(11,4),(5,-4)或(-3,4).【点睛】本题考查了中点坐标公式、待定系数法求一次函数解析式、平行四边形的性质以及解二元一次方程组,解题的关键是:(1)由点A,B的坐标,利用中点坐标公式求出点C的坐标;(2)根据点的坐标,利用待定系数法求出直线CD的解析式;(3)分AC为对角线、AD为对角线及CD为对角线三种情况,利用平行四边形的对角线互相平分找关于m,n的二元一次方程组.23、(1);(2).【解析】
(1)根据二次根式的化简的方法可以解答本题;(2)根据二次根式的乘法、除法和加法可以解答本题.【详解】解:(1)(x≥0,y≥0)==5xy;(2)==6×+4×=3+8=11.【点睛】本题考查二次根式的混合运算,解题的关键是明确二次根式的混合运算的计算方法.24、(1)见解析;(2)2.【解析】分析:(1)直接根据勾股定理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 城市旅游:提升城市形象的新策略
- 偏爱的高级句子
- 健康饮食与智能科技的结合:新型餐饮模式探索
- 2025年度房地产营销推广年度合同模板
- 数字化转型对物流企业绩效影响
- 【全程复习方略】2020年高考政治一轮课时提升作业-必修1-第8课(广东专供)
- 黄冈2024年湖北黄冈市英山县事业单位招聘三支一扶服务期满人员笔试历年典型考点(频考版试卷)附带答案详解
- 信息系统项目管理
- 项目监理机构的组织结构
- 公司战略与风险管理
- 《科学与工程伦理》课件-1港珠澳大桥工程建设中的白海豚保护相关案例分析
- 浙江省杭州市钱塘区2023-2024学年四年级上学期数学期末试卷
- 《湖北省市政基础设施工程质量标准化图册》(燃气管网工程)
- 天车租赁合同范例
- 无机化学实验试题
- 2025年中考道德与法治二轮复习:主观题 答题模板与技巧(含练习题及答案)
- 衡重式及重力式挡土墙自动计算表
- 有关大学生寒假生活计划-大学生的寒假计划
- 2024年01月11129土木工程力学(本)期末试题答案
- 家政公司员工合同范例
- 2025年度安全培训计划
评论
0/150
提交评论