版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届福建省寿宁县八年级下册数学期末监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.不等式13x<1A.x<13 B.x>132.如图,△ABC中,∠C=90°,ED垂直平分AB,若AC=12,EC=5,且△ACE的周长为30,则BE的长为()A.5 B.10 C.12 D.133.如图,已知四边形ABCD是边长为4的正方形,E为CD上一点,且DE=1,F为射线BC上一动点,过点E作EG⊥AF于点P,交直线AB于点G.则下列结论中:①AF=EG;②若∠BAF=∠PCF,则PC=PE;③当∠CPF=45°时,BF=1;④PC的最小值为﹣1.其中正确的有()A.1个 B.1个 C.3个 D.4个4.如图,在平面直角坐标系中,点在坐标轴上,是的中点,四边形是矩形,四边形是正方形,若点的坐标为,则点的坐标为()A. B. C. D.5.某服装加工厂加工校服960套的订单,原计划每天做48套.正好按时完成.后因学校要求提前5天交货,为按时完成订单,设每天就多做x套,则x应满足的方程为()A. B. C. D.6.不等式2x+1>x+2的解集是()A.x>1 B.x<1 C.x≥1 D.x≤17.点P(2,﹣3)关于y轴的对称点的坐标是()A.(2,3) B.(﹣2,﹣3) C.(﹣2,3) D.(﹣3,2)8.在平面直角坐标系中,点(﹣2,﹣a2﹣3)一定在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.下列式子从左到右变形错误的是()A. B. C. D.10.用反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设(
)A.a不垂直于c B.a垂直于b C.a、b都不垂直于c D.a与b相交二、填空题(每小题3分,共24分)11.如图,已知矩形的面积为,依次取矩形各边中点、、、,顺次连结各中点得到第个四边形,再依次取四边形各边中点、、、,顺次连结各中点得到第个四边形,……,按照此方法继续下去,则第个四边形的面积为________.12.如图,四边形ABCD中,E、F、G、H分别为各边的中点,顺次连结E、F、G、H,把四边形EFGH称为中点四边形.连结AC、BD,容易证明:中点四边形EFGH一定是平行四边形.(1)如果改变原四边形ABCD的形状,那么中点四边形的形状也随之改变,通过探索可以发现:当四边形ABCD的对角线满足AC=BD时,四边形EFGH为菱形;当四边形ABCD的对角线满足时,四边形EFGH为矩形;当四边形ABCD的对角线满足时,四边形EFGH为正方形.(2)试证明:S△AEH+S△CFG=S□ABCD(3)利用(2)的结论计算:如果四边形ABCD的面积为2012,那么中点四边形EFGH的面积是(直接将结果填在横线上)13.平面直角坐标系中,将直线l:y=2x-1沿y轴向下平移b个单位长度后后得到直线l′,点A(m,n)是直线l′上一点,且2m-n=3,则b=_______.14.如图P(3,4)是直角坐标系中一点,则P到原点的距离是________.15.已知a﹣2b=10,则代数式a2﹣4ab+4b2的值为___.16.如图所示,已知AB=6,点C,D在线段AB上,AC=DB=1,P是线段CD上的动点,分别以AP,PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G,当点P从点C运动到点D时,则点G移动路径的长是_________.17.已知互为相反数,则的值为______.18.为了考察甲、乙两块地小麦的长势,分别从中随机抽出10株苗,测得苗高如图所示.若和分别表示甲、乙两块地苗高数据的方差,则________.(填“>”、“<”或“=”).三、解答题(共66分)19.(10分)四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(1)本次接受随机抽样调查的学生人数为,图①中m的值是;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.20.(6分)如图,将一个三角板放在边长为1的正方形上,并使它的直角顶点在对角线上滑动,直角的一边始终经过点,另一边与射线相交于点.(1)当点在边上时,过点作分别交,于点,,证明:;(2)当点在线段的延长线上时,设、两点间的距离为,的长为.①直接写出与之间的函数关系,并写出函数自变量的取值范围;②能否为等腰三角形?如果能,直接写出相应的值;如果不能,说明理由.21.(6分)如图,在平面直角坐标系中,O为原点,点A(2,1),B(﹣2,4),直线AB与y轴交于点C.(1)求点C的坐标;(2)求证:△OAB是直角三角形.22.(8分)为加强防汛工作,市工程队准备对长江堤岸一段长为2560米的江堤进行加固,在加固了1000米后,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了50%,因而完成此段加固工程所需天数将比原计划缩短5天,那么现在每天加调的长度是多少米?23.(8分)如图,在△ABC中,点D在边AB上,点F、E在边AC上,DE∥BC,DF∥BE,求证:.24.(8分)在平面直角坐标系中,已知点A(﹣4,2),B(﹣4,0),C(﹣1,1),请在图上画出△ABC,并画出与△ABC关于原点O对称的图形.25.(10分)某校八年级一班20名女生某次体育测试的成绩统计如下:成绩(分)60708090100人数(人)15xy2(1)如果这20名女生体育成绩的平均分数是82分,求x、y的值;(2)在(1)的条件下,设20名学生测试成绩的众数是a,中位数是b,求的值.26.(10分)如图,点分别是对角线上两点,.求证:.
参考答案一、选择题(每小题3分,共30分)1、D【解析】
两边同时乘以3,即可得到答案.【详解】解:13x<1,解得:故选择:D.【点睛】本题考查了解不等式,解题的关键是掌握不等式的解法.2、D【解析】
ED垂直平分AB,BE=AE,在通过△ACE的周长为30计算即可【详解】解:∵ED垂直平分AB,∴BE=AE,∵AC=12,EC=5,且△ACE的周长为30,∴12+5+AE=30,∴AE=13,∴BE=AE=13,故选:D.【点睛】本题考查了线段的垂直平分线的性质,熟知线段垂直平分线上的点到线段两端点的距离相等是解答此题的关键.3、C【解析】
连接AE,过E作EH⊥AB于H,则EH=BC,根据全等三角形的判定和性质定理即可得到AF=EG,故①正确;根据平行线的性质和等腰三角形的性质即可得到PE=PC;故②正确;连接EF,推出点E,P,F,C四点共圆,根据圆周角定理得到∠FEC=∠FPC=45°,于是得到BF=DE=1,故③正确;取AE的中点O,连接PO,CO,根据直角三角形的性质得到AO=PO=AE,推出点P在以O为圆心,AE为直径的圆上,当O、C、P共线时,CP的值最小,根据三角形的三边关系得到PC≥OC﹣OP,根据勾股定理即可得到结论.【详解】连接AE,过E作EH⊥AB于H,则EH=BC,∵AB=BC,∴EH=AB,∵EG⊥AF,∴∠BAF+∠AGP=∠BAF+∠AFB=90°,∴∠EGH=∠AFB,∵∠B=∠EHG=90°,∴△HEG≌△ABF(AAS),∴AF=EG,故①正确;∵AB∥CD,∴∠AGE=∠CEG,∵∠BAF+∠AGP=90°,∠PCF+∠PCE=90°,∵∠BAF=∠PCF,∴∠AGE=∠PCE,∴∠PEC=∠PCE,∴PE=PC;故②正确;连接EF,∵∠EPF=∠FCE=90°,∴点E,P,F,C四点共圆,∴∠FEC=∠FPC=45°,∴EC=FC,∴BF=DE=1,故③正确;取AE的中点O,连接PO,CO,∴AO=PO=AE,∵∠APE=90°,∴点P在以O为圆心,AE为直径的圆上,∴当O、C、P共线时,CP的值最小,∵PC≥OC﹣OP,∴PC的最小值=OC﹣OP=OC﹣AE,∵OC==,AE==,∴PC的最小值为﹣,故④错误,故选:C.【点睛】此题考查了正方形的性质、全等三角形的判定和性质、直角三角形的性质、圆的综合等知识,借助圆的性质解决线段的最小值是解答的关键.4、D【解析】
过点D作DH⊥y轴,交y轴于H,根据矩形和正方形的性质可得∠EOF=∠BCF=∠HDE=90°,EF=BF=ED,BC=OA,根据角的和差故关系可得∠FBC=∠OFE=∠HED,∠BFC=∠OEF=∠HDE,利用ASA可证明△OFE≌△CBF≌△HDE,可得FC=OE=HD,BC=OF=HE,由点E为OA中点可得OF=2FC,即可求出FC的长,进而可得HE的长,即可求出OH的长,即可得点D坐标.【详解】过点D作DH⊥y轴,交y轴于H,∵四边形是矩形,四边形是正方形,∴∠EOF=∠BCF=∠HDE=∠EFB=90°,EF=BF=ED,BC=OA,∴∠OFE+∠BFC=90°,∠FBC+∠BFC=90°,∴∠OFE=∠FBC,同理:∠OEF=∠BFC,在△OEF和△CFB中,,∴BC=OF=OA,FC=OE,∵点E为OA中点,∴OA=2OE,∴OF=2OE,∴OC=3OE,∵点C坐标为(3,0),∴OC=3,∴OE=1,OF=2,同理:△HDE≌△OEF,∴HD=OE=1,HE=OF=2,∴OH=OE+HE=3,∴点D坐标为(1,3),故选:D.【点睛】本题考查正方形的性质、矩形的性质及全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解题关键.5、D【解析】解:原来所用的时间为:,实际所用的时间为:,所列方程为:.故选D.点睛:本题考查了由实际问题抽象出分式方程,关键是时间作为等量关系,根据每天多做x套,结果提前5天加工完成,可列出方程求解.6、A【解析】试题分析:先移项,再合并同类项,把x的系数化为1即可.解:移项得,2x﹣x>2﹣1,合并同类项得,x>1,故选A点评:本题考查的是在解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.7、B【解析】试题分析:点P(2,-3)关于y轴的对称点的坐标是(-2,-3).故选B.考点:关于x轴、y轴对称的点的坐标.8、C【解析】
根据直角坐标系的坐标特点即可判断.【详解】解:∵a2+3≥3>0,∴﹣a2﹣3<0,∴点(﹣2,﹣a2﹣3)一定在第三象限.故选C.【点睛】此题主要考查直角坐标系点的特点,解题的关键是熟知各象限坐标特点.9、C【解析】
根据分式的性质逐个判断即可.【详解】解:,故选:C.【点睛】本题主要考查分式的基本性质,分式的分子分母同时乘以一个不为0的数,不会改变分式的大小.10、D【解析】
反证法的步骤中,第一步是假设结论不成立,反面成立,即可解答.【详解】解:用反证法证明“在同一平面内,若a⊥c,b⊥c,则a∥b”,应假设:a不平行b或a与b相交.故选择:D.【点睛】本题考查了反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.二、填空题(每小题3分,共24分)11、【解析】
根据矩形ABCD的面积、四边形A1B1C1D1面积、四边形A2B2C2D2的面积、四边形A3B3C3D3的面积,即可发现中点四边形的面积等于原四边形的面积的一半,找到规律即可解题.【详解】解:顺次连接矩形ABCD四边的中点得到四边形A1B1C1D1,则四边形A1B1C1D1的面积为矩形ABCD面积的,顺次连接四边形A1B1C1D1四边的中点得到四边形A2B2C2D2,则四边形A2B2C2D2的面积为四边形A1B1C1D1面积的一半,即为矩形ABCD面积的,顺次连接四边形A2B2C2D2四边的中点得四边形A3B3C3D3,则四边形A3B3C3D3的面积为四边形A2B2C2D2面积的一半,即为矩形ABCD面积的,故中点四边形的面积等于原四边形的面积的一半,则四边形AnBnCnDn面积为矩形ABCD面积的,又∵矩形ABCD的面积为1,∴四边形AnBnCnDn的面积=1×=,故答案为:.【点睛】本题考查了中点四边形以及矩形的性质的运用,找到连接矩形、菱形中点所得的中点四边形的面积为原四边形面积的一半是解题的关键.12、;(2)详见解析;(3)1【解析】
(1)若四边形EFGH为矩形,则应有EF∥HG∥AC,EH∥FG∥BD,EF⊥EH,故应有AC⊥BD;若四边形EFGH为正方形,同上应有AC⊥BD,又应有EH=EF,而EF=AC,EH=BD,故应有AC=BD.
(2)由相似三角形的面积比等于相似比的平方求解.
(3)由(2)可得S▱EFGH=S四边形ABCD=1【详解】(1)解:若四边形EFGH为矩形,则应有EF∥HG∥AC,EH∥FG∥BD,EF⊥EH,故应有AC⊥BD;
若四边形EFGH为正方形,同上应有AC⊥BD,又应有EH=EF,而EF=AC,EH=BD,故应有AC=BD;
(2)S△AEH+S△CFG=S四边形ABCD
证明:在△ABD中,
∵EH=BD,
∴△AEH∽△ABD.
∴=()2=
即S△AEH=S△ABD
同理可证:S△CFG=S△CBD
∴S△AEH+S△CFG=(S△ABD+S△CBD)=S四边形ABCD;(3)解:由(2)可知S△AEH+S△CFG=(S△ABD+S△CBD)=S四边形ABCD,
同理可得S△BEF+S△DHG=(S△ABC+S△CDA)=S四边形ABCD,
故S▱EFGH=S四边形ABCD=1.【点睛】本题考查了三角形的中位线的性质及特殊四边形的判定和性质,相似三角形的性质.13、2【解析】
先写出直线l′的解析式为y=2x-1-b,代入点A的坐标得到n=2m-1-b,因为2m-n=3,即可解答出b的值.【详解】∵直线l′为y=2x-1沿y轴向下平移b个单位长度,∴直线l′:y=2x-1-b,∵点A(m,n)是直线l′上一点,∴n=2m-1-b又∵且2m-n=3,解得b=2.故答案为:2.【点睛】此题考查一次函数,解题关键在于一次函数图象的平移.14、5【解析】
根据勾股定理,可得答案.【详解】解:PO=32+4故选:C.【点睛】本题考查了点的坐标,利用勾股定理是解题关键.15、1.【解析】
将a2﹣4ab+4b2进行因式分解变形为(a﹣2b)2,再把a﹣2b=10,代入即可.【详解】∵a﹣2b=10,∴a2﹣4ab+4b2=(a﹣2b)2=102=1,故答案为:1.【点睛】本题考查因式分解的应用,解答本题的关键是明确题意,利用完全平方公式因式分解,求出相应的式子的值.16、1【解析】
分别延长AE,BF交于点H,易证四边形EPFH为平行四边形,得出点G为PH的中点,则G的运动轨迹为△HCD的中位线MN,再求出CD的长度,运用中位线的性质求出MN的长度即可.【详解】解:如图,分别延长AE,BF交于点H,∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE∴四边形EPFH为平行四边形,∴EF与HP互相平分,∵点G为EF的中点,∴点G为PH的中点,即在P运动的过程中,G始终为PH的中点,∴G的运动轨迹为△HCD的中位线MN,∵CD=6-1-1=4,∴MN==1,∴点G移动路径的长是1,故答案为:1.【点睛】本题考查了等边三角形及中位线的性质,以及动点的问题,是中考热点,解题的关键是得出G的运动轨迹为△HCD的中位线MN.17、0【解析】
先变形为,再提取公因式分解因式即可得.然后利用相反数的定义将整体代入即可求解.【详解】解:因为,互为相反数,所以,原式.故答案为:0.【点睛】本题考查了对一个多项式因式分解的灵活运用能力,结合互为相反数的两数和为0,巧求代数式的值.18、<【解析】
方差用来计算每一个变量(观察值)与总体均数之间的差异,所以从图像看苗高的波动幅度,可以大致估计甲、乙两块地苗高数据的方差.【详解】解:由图可知,甲、乙两块地的苗高皆在12cm上下波动,但乙的波动幅度比甲大,∴则故答案为:<【点睛】本题考查了方差,方差反映了数据的波动程度,方差越大,数据的波动越大,正确理解方差的含义是解题的关键.三、解答题(共66分)19、(1)50;1;(2)2;3;15;(3)608人.【解析】
(1)根据条形统计图即可得出样本容量:4+2+12+3+8=50(人);根据扇形统计图得出m的值:;(2)利用平均数、中位数、众数的定义分别求出即可.(3)根据样本中捐款3元的百分比,从而得出该校本次活动捐款金额为3元的学生人数.【详解】解:(1)根据条形图4+2+12+3+8=50(人),
m=30-20-24-2-8=1;故答案为:50;1.(2)∵,∴这组数据的平均数为:2.∵在这组样本数据中,3出现次数最多为2次,∴这组数据的众数为:3.∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,∴这组数据的中位数为:,(3)∵在50名学生中,捐款金额为3元的学生人数比例为1%,∴由样本数据,估计该校1900名学生中捐款金额为3元的学生人数有1900×1%=608人.∴该校本次活动捐款金额为3元的学生约有608人.【点睛】此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.20、(1)见解析;(2)①.②能为等腰三角形,.【解析】
(1)根据正方形的性质证明,即可求解;(2)①根据题意作图,由正方形的性质可知当时,点在线段的延长线上,同理可得,得到MP=NQ,利用等腰直角三角形的性质可知MP=x,NC=CD-DN=1-x,CQ=y,代入MP=NQ化简即可求解;②由是等腰三角形,∠PCQ=135°,CP=CQ成立,代入解方程即可求解,【详解】(1)证明:∵在正方形中,为对角线,∴,,∵,∴,,∴,又∵,∴.∵,∴.又∵,∴,∴,在中,∵∴,∴.(2)①如图,点在线段的延长线上,同(1)可证,∴MP=NQ,在等腰直角三角形AMP中,AP==x∴MP=x=AM,∴NC=BM=AB-AM=1-x故NQ=NC+CQ=1-x+y∴x=1-x+y化简得当P点位于AC中点时,Q点恰好在C点,又AP<AC=∴∴与之间的函数关系是()②当时,能为等腰三角形,理由:当点在的延长线上,CQ=,CQ=AC-AP=,由是等腰三角形,∠PCQ=∠PCB+∠BCQ=45°+90°=135°,∴CP=CQ成立,即时,解得.【点睛】此题主要考查正方形的性质综合,解题的关键是熟知全等三角形的判定与性质、等腰三角形的性质与判定.21、(1)(0,52);(2【解析】
(1)利用待定系数法求出直线AB的解析式,求出点C的坐标;(2)根据勾股定理分别求出OA2、OB2、AB2,根据勾股定理的逆定理判断即可.【详解】(1)解:设直线AB的解析式为:y=kx+b,点A(2,1),B(﹣2,4),则2k+b=1-2k+b=4解得,k=-3∴设直线AB的解析式为:y=﹣34x+5∴点C的坐标为(0,52(2)证明:∵点A(2,1),B(﹣2,4),∴OA2=22+12=5,OB2=22+42=20,AB2=(4-1)2+(-2-2)2=25,则OA2+OB2=AB2,∴△OAB是直角三角形.【点睛】本题考查的是待定系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大米专用冰箱产品供应链分析
- 带有时钟的收音机产业链招商引资的调研报告
- 医疗影像技术行业相关项目经营管理报告
- 乐器修理或维护行业营销策略方案
- 美容霜项目营销计划书
- 幼儿园行业经营分析报告
- 不动产出租服务行业营销策略方案
- 含药物的护肤液产品供应链分析
- 矿物绝缘电缆产品供应链分析
- 云计算法务服务行业营销策略方案
- 文化广场规划设计方案说明书
- 2012年数学建模机器人避障问题
- 规模化养猪场的科学用水管理
- 日本泡沫经济专题讲座PPT
- 电梯故障状态救援操作规程
- 车间现场作业指导书SOP模板样本
- 郎酒经销商大全国内各大城市代理商经销商
- 低压开关柜验收规范
- 四年级体育教学计划及进度表[中小教育]
- 六年级英语总复习名词专项练习
- 政府采购工作自查报告四篇
评论
0/150
提交评论