2024年海南省海口中学八年级下册数学期末质量检测模拟试题含解析_第1页
2024年海南省海口中学八年级下册数学期末质量检测模拟试题含解析_第2页
2024年海南省海口中学八年级下册数学期末质量检测模拟试题含解析_第3页
2024年海南省海口中学八年级下册数学期末质量检测模拟试题含解析_第4页
2024年海南省海口中学八年级下册数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年海南省海口中学八年级下册数学期末质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知是完全平方式,则的值为()A.6 B. C.12 D.2.用反证法证明:“中,若.则”时,第一步应假设()A. B. C. D.3.平行四边形、矩形、菱形、正方形共有的性质是()A.对角线相等 B.对角线互相垂直C.对角线互相平分 D.对角形互相垂直平分4.在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD的周长是()A.22 B.20C.22或20 D.185.分式,-,的最简公分母是(

)A.5abx B.5abx3 C.15abx D.15abx26.如图,菱形ABCD的边长为4,过点A、C作对角线AC的垂线,分别交CB和AD的延长线于点E、F,AE=3,则四边形AECF的周长为().A.22 B.18 C.14 D.117.如图,在中,,点是外一点,连接、、,且交于点,在上取一点,使得,.若,则的度数为A. B. C. D.8.如图,一次函数y=mx+n与y=mnx(m≠0,n≠0)在同一坐标系内的图象可能是()A. B.C. D.9.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第(7)个图案中阴影小三角形的个数是()A. B. C. D.10.如图,在长方形ABCD中,AB=2,BC=1,运点P从点B出发,沿路线BCD作匀速运动,那么△ABP的面积与点P运动的路程之间的函数图象大致是().A. B. C. D.二、填空题(每小题3分,共24分)11.如图,直线过点A(0,2),且与直线交于点P(1,m),则不等式组>>-2的解集是_________12.当________时,方程无解.13.已知关于x的一次函数同时满足下列两个条件:函数y随x的增大而减小;当时,对应的函数值,你认为符合要求的一次函数的解析式可以是______写出一个即可.14.如图,已知∠BAC=120º,AB=AC,AC的垂直平分线交BC于点D,则∠ADB=_______;15.《算法统宗》记载古人丈量田地的诗:“昨日丈量地回,记得长步整三十.广斜相并五十步,不知几亩及分厘.”其大意是:昨天丈量了田地回到家,记得长方形田的长为30步,宽和对角线之和为50步.不知该田有几亩?请我帮他算一算,该田有___亩(1亩=240平方步).16.某校举行“纪念香港回归21周年”演讲比赛,共有15名同学进入决赛(决赛成绩互不相同),比赛将评出金奖1名,银奖3名,铜奖4名.某参赛选手知道自己的分数后,要判断自己能否获奖,他应当关注的是有关成绩的________.(填“平均数”“中位数”或“众数”)17.点A(-2,3)关于x轴对称的点B的坐标是_____18.一元二次方程x2﹣4=0的解是._________三、解答题(共66分)19.(10分)在正方形中,点是边的中点,点是对角线上的动点,连接,过点作交正方形的边于点;(1)当点在边上时,①判断与的数量关系;②当时,判断点的位置;(2)若正方形的边长为2,请直接写出点在边上时,的取值范围.20.(6分)某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?21.(6分)如图,DE⊥AB,CF⊥AB,垂足分别是点E、F,DE=CF,AE=BF,求证:AC∥BD.22.(8分)骑自行车旅行越来越受到人们的喜爱,顺风车行经营的型车2017年7月份销售额为万元,今年经过改造升级后,型车每辆的销售价比去年增加元,若今年7月份与去年7月份卖出的型车数量相同,则今年7月份型车销售总额将比去年7月份销售总额增加.求今年7月份顺风车行型车每辆的销售价格.23.(8分)数学问题:用边长相等的正三角形、正方形和正六边形能否进行平面图形的镶嵌?问题探究:为了解决上述数学问题,我们采用分类讨论的思想方法去进行探究.探究一:从正三角形、正方形和正六边形中任选一种图形,能否进行平面图形的镶嵌?第一类:选正三角形.因为正三角形的每一个内角是60°,所以在镶嵌平面时,围绕某一点有6个正三角形的内角可以拼成一个周角,所以用正三角形可以进行平面图形的镶嵌.第二类:选正方形.因为正方形的每一个内角是90°,所以在镶嵌平面时,围绕某一点有4个正方形的内角可以拼成一个周角,所以用正方形也可以进行平面图形的镶嵌.第三类:选正六边形.(仿照上述方法,写出探究过程及结论)探究二:从正三角形、正方形和正六边形中任选两种图形,能否进行平面图形的镶嵌?第四类:选正三角形和正方形在镶嵌平面时,设围绕某一点有x个正三角形和y个正方形的内角可以拼成个周角.根据题意,可得方程60x+90y=360整理,得2x+3y=1.我们可以找到唯一组适合方程的正整数解为.镶嵌平面时,在一个顶点周围围绕着3个正三角形和2个正方形的内角可以拼成一个周角,所以用正三角形和正方形可以进行平面镶嵌第五类:选正三角形和正六边形.(仿照上述方法,写出探究过程及结论)第六类:选正方形和正六边形,(不写探究过程,只写出结论)探究三:用正三角形、正方形和正六边形三种图形是否可以镶嵌平面?第七类:选正三角形、正方形和正六边形三种图形.(不写探究过程,只写结论),24.(8分)考虑下面两种移动电话计费方式方式一方式二月租费(月/元)300本地通话费(元/分钟)0.300.40(1)直接写出两种计费方式的费用y(单位:元)关于本地通话时间x(单位:分钟)的关系式.(2)求出两种计费方式费用相等的本地通话时间是多少分钟.25.(10分)甲、乙两个机器人检测零件,甲比乙每小时多检测10个,甲检测300个与乙检测200个所用的时间相等.甲、乙两个机器人每小时各检测零件多少个?26.(10分)如图,在矩形中,对角线与相交于点,点,分别是,的中点,连结,.(1)求证:;(2)连结,若,,求矩形的周长.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

根据完全平方式的结构特征,即可求出m的值.【详解】解:∵是完全平方式,∴;故选择:D.【点睛】此题主要考查了完全平方公式的应用,要熟练掌握,解答此题的关键是要明确:(a±b)1=a1±1ab+b1.2、B【解析】

熟记反证法的步骤,直接选择即可【详解】解:用反证法证明命题“在△ABC中,AB≠AC,求证:∠B≠∠C”的过程中,第一步应是假设∠B=∠C.故选:B【点睛】本题结合角的比较考查反证法,解此题关键要懂得反证法的意义及步骤.

反证法的步骤是:

(1)假设结论不成立;

(2)从假设出发推出矛盾;

(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.3、C【解析】

根据平行四边形,矩形,菱形,正方形的对角线的性质对各选项分析判断后利用排除法求解.【详解】解:A、只有矩形,正方形的对角线相等,故本选项错误;B、只有菱形,正方形的对角线互相垂直,故本选项错误;C、平行四边形、矩形、菱形、正方形的对角线都互相平分,故本选项正确;D、只有菱形,正方形的对角线互相垂直平分,故本选项错误.故选:C.【点睛】本题主要考查了平行四边形,矩形,菱形,正方形的对角线的性质,是基础题,熟记各图形的性质是解题的关键.4、C【解析】试题解析:在平行四边形ABCD中,AD∥BC,则∠DAE=∠AEB.∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,BC=BE+EC,如图,①当BE=3,EC=4时,平行四边形ABCD的周长为:2(AB+AD)=2(3+3+4)=1.②当BE=4,EC=3时,平行四边形ABCD的周长为:2(AB+AD)=2(4+4+3)=2.故选C.考点:平行四边形的性质.5、D【解析】

求出ax,3b,5x2的最小公因式即可。【详解】解:由ax,3b,5x2得最小公因式为15abx2,故答案为D。【点睛】本题考查了最简公分母,即分母的最小公因式;其关键在于最小公因式,不仅最小,而且能被每一个分母整除。6、A【解析】试题分析:根据菱形的对角线平分一组对角可得∠BAC=∠BCA,再根据等角的余角相等求出∠BAE=∠E,根据等角对等边可得BE=AB=4,然后求出EC=BE+BC=4+4=8,同理可得AF=8,因为AD∥BC,所以四边形AECF是平行四边形,所以四边形AECF的周长=2(AE+EC)=2(3+8)=1.故选A.考点:菱形的性质;平行四边形的判定与性质.7、C【解析】

利用等腰三角形的性质,得到∠ADE=68°,由三角形外角性质即可求出∠AEB.【详解】解:由题意,,∵,∴∠ADE=,∴∠AEB=44°+68°=112°;故选择:C.【点睛】本题考查了等腰三角形的性质,三角形的外角性质,解题的关键是求出∠ADE的度数.8、C【解析】

根据m、n同正,同负,一正一负时利用一次函数的性质进行判断.【详解】解:①当mn>0时,m、n同号,y=mnx过一三象限;同正时,y=mx+n经过一、二、三象限,同负时,y=mx+n过二、三、四象限;②当mn<0时,m、n异号,y=mnx过二四象限,m>0,n<0时,y=mx+n经过一、三、四象限;m<0,n>0时,y=mx+n过一、二、四象限;故选:C.【点睛】本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.9、A【解析】

对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,进而得出即可.【详解】解:由图可知:

第一个图案有阴影小三角形2个.

第二图案有阴影小三角形2+4=6个.

第三个图案有阴影小三角形2+8=10个,

那么第n个图案中就有阴影小三角形2+4(n-1)=4n-2个,

当n=7时,4n-2=4×7-2=26.

故选:A.【点睛】本题考查图形的变化规律,注意由特殊到一般的分析方法,此题的规律为:第n个图案中就有阴影小三角形4n-2个.10、B【解析】

首先判断出从点B到点C,△ABP的面积y与点P运动的路程x之间的函数关系是:y=x(0≤x≤1);然后判断出从点C到点D,△ABP的底AB的高一定,高都等于BC的长度,所以△ABP的面积一定,y与点P运动的路程x之间的函数关系是:y=1(1≤x≤3),进而判断出△ABP的面积y与点P运动的路程x之间的函数图象大致是哪一个即可.【详解】从点B到点C,△ABP的面积y与点P运动的路程x之间的函数关系是:y=x(0≤x≤1);因为从点C到点D,△ABP的面积一定:2×1÷2=1,所以y与点P运动的路程x之间的函数关系是:y=1(1≤x≤3),所以△ABP的面积y与点P运动的路程x之间的函数图象大致是:.故选B.【点睛】此题主要考查了动点问题的函数图象,考查了分类讨论思想的应用,解答此题的关键是分别判断出从点B到点C以及从点C到点D,△ABP的面积y与点P运动的路程x之间的函数关系.二、填空题(每小题3分,共24分)11、【解析】

解:由于直线过点A(0,2),P(1,m),则,解得,,故所求不等式组可化为:mx>(m-2)x+2>mx-2,0>-2x+2>-2,解得:1<x<2,12、1【解析】

根据分式方程无解,得到1−x=0,求出x的值,分式方程去分母转化为整式方程,将x的值代入整式方程计算即可求出m的值.【详解】解:分式方程去分母得:m=2(1−x)+1,由分式方程无解,得到1−x=0,即x=1,代入整式方程得:m=1.故答案为:1.【点睛】此题考查了分式方程的解,将分式方程转化为整式方程是解本题的关键.13、(答案不唯一)【解析】

先设一次函数,由一次函数y随x的增大而减小可得:,由当时,对应的函数值可得:,故符合条件的一次函数中,即可.【详解】设一次函数,因为一次函数y随x的增大而减小,所以,因为当时,对应的函数值所以,所以符合条件的一次函数中,即可.故答案为:.【点睛】本题主要考查一次函数图象和性质,解决本题的关键是要熟练掌握一次函数图象和性质.14、60【解析】

先根据等腰三角形的性质求出∠C的度数,再由线段垂直平分线的性质可知∠C=∠CAD,根据三角形内角与外角的关系即可求解.【详解】解:∵∠BAC=120°,AB=AC,∴∠C===30°,∵AC的垂直平分线交BC于D,∴AD=CD,∴∠C=∠CAD=30°,∵∠ADB是△ACD的外角,∴∠ADB=∠C+∠CAD=30°+30°=60°.故答案为60°.【点睛】本题主要考查线段垂直平分线的性质,等腰三角形的性质,熟记知识点是解题的关键.15、1.【解析】

根据矩形的性质、勾股定理求得长方形的宽,然后由矩形的面积公式解答.【详解】设该矩形的宽为x步,则对角线为(50﹣x)步,由勾股定理,得301+x1=(50﹣x)1,解得x=16故该矩形的面积=30×16=480(平方步),480平方步=1亩.故答案是:1.【点睛】考查了勾股定理的应用,此题利用方程思想求得矩形的宽.16、中位数【解析】试题分析:中位数表示的是这15名同学中成绩处于第八名的成绩,如果成绩是中位数以前,则肯定获奖,如果成绩是中位数以后,则肯定没有获奖.考点:中位数的作用17、(-2,-3).【解析】根据在平面直角坐标系中,关于x轴对称的两个点的横坐标相同,纵坐标相反即可得出答案.解:点A(-2,3)关于x轴对称的点B的坐标是(-2,-3).故答案为(-2,-3).18、x=±1【解析】移项得x1=4,∴x=±1.故答案是:x=±1.三、解答题(共66分)19、(1)①,理由详见解析;②点位于正方形两条对角线的交点处(或中点出),理由详见解析;(2)【解析】

(1)①过点作于点,于点,通过证可得ME=MF;②点位于正方形两条对角线的交点处时,,可得;(2)当点F分别在BC的中点处和端点处时,可得M的位置,进而得出AM的取值范围。【详解】解:(1)。理由是:过点作于点,于点在正方形中,矩形为正方形又②点位于正方形两条对角线的交点处(或中点处)如图,是的中位线,又,此时,是中点,且,,(2)当点F在BC中点时,M在AC,BD交点处时,此时AM最小,AM=AC=;当点F与点C重合时,M在AC,BD交点到点C的中点处,此时AM最大,AM=。故答案为:【点睛】本题是运动型几何综合题,考查了全等三角形、正方形、命题证明等知识点.解题要点是:(1)明确动点的运动过程;(2)明确运动过程中,各组成线段、三角形之间的关系;(3)添加恰当的辅助线是解题的关键。20、(1)y=﹣200x+1(2)2(3)2【解析】

(1)根据每个工人每天生产的产品个数以及每个产品的利润,表示出总利润即可.(2)根据每天获取利润为14400元,则y=14400,求出即可.(3)根据每天获取利润不低于15200元即y≥15200,求出即可.【详解】解:(1)根据题意得:y=12x×100+10(10﹣x)×180=﹣200x+1.(2)当y=14400时,有14400=﹣200x+1,解得:x=2.∴要派2名工人去生产甲种产品.(3)根据题意可得,y≥15200,即﹣200x+1≥15200,解得:x≤4,∴10﹣x≥2,∴至少要派2名工人去生产乙种产品才合适.21、答案见解析.【解析】试题分析:欲证明AC∥BD,只要证明∠A=∠B,只要证明△DEB≌△CFA即可.试题解析:∵DE⊥AB,CF⊥AB,∴∠DEB=∠AFC=90°,∵AE=BF,∴AF=BE,在△DEB和△CFA中,∵DE=CF,∠DEB=∠AFC,AF=BE,△DEB≌△CFA,∴∠A=∠B,∴AC∥DB.考点:全等三角形的判定与性质.22、2000【解析】

设去年A型车每辆x元,那么今年每辆(x+400)元,列出方程即可解决问题.【详解】解:设去年A型车每辆x元,那么今年每辆(x+400)元,根据题意得解得x=1600,经检验,x=1600是方程的解.答:今年A型车每辆2000元.【点睛】本题考查了分式方程的应用,解题的关键是设未知数列出方程解决问题,注意分式方程必须检验.23、详见解析【解析】

根据题意列出二元一次方程或三元一次方程,求出方程的正整数解,即可得出答案.【详解】解:第五类:设x个正三角形,y个正六边形,则60x+10y=360,x+2y=6,正整数解是或,即镶嵌平面时,在一个顶点周围围绕着2个正三角形和2个正六边形(或4个正三角形和1个正六边形)的内角可以拼成一个周角,所以用正三角形和正六边形可以进行平面镶嵌;第六类:设x个正方形,y个正六边形,则90x+10y+=360,3x+4y=1,此方程没有正整数解,即镶嵌平面时,不能在一个顶点周围围绕着正方形和正六边形的内角拼成一个周角,所以不能用正方形和正六边形进行平面镶嵌;第七类:设x个正三角形,y个正方形,z个正六边形,则60x+90y+10z=360,2x+3y+4z=1,正整数解是,即镶嵌平面时,在一个顶点周围围绕着1个正

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论