辽宁省新宾县联考2024届数学八年级下册期末学业水平测试试题含解析_第1页
辽宁省新宾县联考2024届数学八年级下册期末学业水平测试试题含解析_第2页
辽宁省新宾县联考2024届数学八年级下册期末学业水平测试试题含解析_第3页
辽宁省新宾县联考2024届数学八年级下册期末学业水平测试试题含解析_第4页
辽宁省新宾县联考2024届数学八年级下册期末学业水平测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省新宾县联考2024届数学八年级下册期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.直线与在同一平面直角坐标系中的图象如图所示,则关于x的不等式的解集为()A.x>﹣2 B.x<﹣2 C.x≥﹣1 D.x<﹣12.若,则函数的图象可能是A. B. C. D.3.若点P(a,2)在第二象限,则a的值可以是()A. B.0 C.1 D.24.如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,交AC于点E,连接CD,则CD的长度为()A.3 B.4 C.4.8 D.55.已知小强家、体育馆、文具店在同一直线上如图中的图象反映的过程是:小强从家跑步去体育馆,在那里锻炼了一阵后又走到文具店去买笔,然后散步回家.下列信息中正确的是()A.小强在体育馆花了20分钟锻炼B.小强从家跑步去体育场的速度是10km/hC.体育馆与文具店的距离是3kmD.小强从文具店散步回家用了90分钟6.为了保障艺术节表演的整体效果,某校在操场中标记了几个关键位置,如图是利用平面直角坐标系画出的关键位置分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示点A的坐标为(1,-1),表示点B的坐标为A.C(-1,0) B.7.我国是最早了解勾股定理的国家之一.下面四幅图中,不能用来证明勾股定理的是()A. B. C. D.8.下列命题是真命题的是()A.对角线互相垂直的四边形是菱形 B.对角线相等的菱形是正方形C.对角线互相垂直且相等的四边形是正方形 D.对角线相等的四边形是矩形9.如图,在菱形中,,的垂直平分线交对角线于点,为垂足,连结,则等于()A. B. C. D.10.将分式中的a与b都扩大为原来的2倍,则分式的值将()A.扩大为原来的2倍 B.分式的值不变C.缩小为原来的 D.缩小为原来的11.下列命题正确的是()A.对角线互相垂直的四边形是菱形B.一组对边相等,另一组对边平行的四边形是平行四边形C.对角线相等的四边形是矩形D.对角线互相垂直平分且相等的四边形是正方形12.某车间5月上旬生产零件的次品数如下(单位:个):0,2,0,2,3,0,2,3,1,1.则在这10天中该车间生产零件的次品数的()A.众数是3 B.中位数是1.5 C.平均数是2 D.以上都不正确二、填空题(每题4分,共24分)13.等腰梯形的上底是10cm,下底是16cm,高是4cm,则等腰梯形的周长为______cm.14..在平面直角坐标系中,若点M(1,3)与点N(x,3)之间的距离是5,则x的值是____________.15.如果等腰梯形两底差的一半等于它的高,那么此梯形较小的一个底角等于_________度.16.如图,小明把一块含有60°锐角的直角三角板的三个顶点分别放在一组平行线上,如果∠1=20°,那么∠2的度数是______.17.当_____________时,在实数范围内有意义.18.分解因式:____________三、解答题(共78分)19.(8分)如图,已知、分别是平行四边形的边、上的点,且.求证:四边形是平行四边形.20.(8分)(1)计算:(1﹣)÷;(2)化简求值:(﹣)÷,其中m=﹣121.(8分)先化简,再求值:,其中a满足.22.(10分)已知:如图,在中,的平分线交于点,的平分线交于点,交于点.求证:.23.(10分)如图,平行四边形ABCD的对角线AC,BD相交于点O,E,F分别是OA,OC的中点.求证△ADE≌△CBF24.(10分)如图,四边形中,,平分,交于.(1)求证:四边形是菱形;(2)若点是的中点,试判断的形状,并说明理由.25.(12分)化简.26.如图,在△ABC中,∠C=90°,∠A=30°,边AB的垂直平分线交AB于点D,交AC于点E.求证:AE=2CE.

参考答案一、选择题(每题4分,共48分)1、C【解析】

根据函数图象交点左侧直线y=kx+b图象在直线y=mx图象的下面,即可得出不等式kx+b≤mx的解集.【详解】解:由图可知,在x≥-1时,直线y=mx在直线y=kx+b上方,关于x的不等式kx+b≤mx的解是x≥-1.

故选:C.【点睛】本题考查了一次函数与一元一次不等式:观察函数图象,比较函数图象的高低(即比较函数值的大小),确定对应的自变量的取值范围.也考查了数形结合的思想.2、A【解析】

根据kb>0,可知k>0,b>0或k<0,b<0,然后分情况讨论直线的位置关系.【详解】由题意可知:可知k>0,b>0或k<0,b<0,

当k>0,b>0时,

直线经过一、二、三象限,

当k<0,b<0

直线经过二、三、四象限,

故选(A)【点睛】本题考查一次函数的图像,解题的关键是清楚kb大小和图像的关系.3、A【解析】

根据第二象限内点的横坐标是负数判断.【详解】解:∵点P(a,1)在第二象限,∴a<0,∴-1、0、1、1四个数中,a的值可以是-1.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4、D【解析】

已知AB=10,AC=8,BC=8,根据勾股定理的逆定理可判定△ABC为直角三角形,又因DE为AC边的中垂线,可得DE⊥AC,AE=CE=4,所以DE为三角形ABC的中位线,即可得DE==3,再根据勾股定理求出CD=5,故答案选D.考点:勾股定理及逆定理;中位线定理;中垂线的性质.5、B【解析】

根据图象信息即可解决问题.【详解】解:A.小强在体育馆花了分钟锻炼,错误;B.小强从家跑步去体育场的速度是,正确;C.体育馆与文具店的距高是,错误;D.小强从文具店散步回家用了分钟,错误;故选:B.【点睛】本题考查了函数图象,观察函数图象,逐一分析四条说法的正误是解题的关键.6、B【解析】

正确建立平面直角坐标系,根据平面直角坐标系,找出相应的位置,然后写出坐标即可.【详解】建立平面直角坐标系,如图:则C(0表示正确的点的坐标是点D.故选B.【点睛】本题主要考查坐标确定位置,确定坐标原点和x,y轴的位置及方向,正确建立平面直角坐标系是解题关键.7、C【解析】

根据A、B、C、D各图形结合勾股定理一一判断可得答案.【详解】解:A、有三个直角三角形,其面积分别为ab,ab和,还可以理解为一个直角梯形,其面积为,由图形可知:=ab+ab+,整理得:(a+b)=2ab+c,a+b+2ab=2ab+c,a+b=c能证明勾股定理;B、中间正方形的面积=c,中间正方形的面积=(a+b)-4ab=a+b,a+b=c,能证明勾股定理;C、不能利用图形面积证明勾股定理,它是对完全平方公式的说明.D、大正方形的面积=c,大正方形的面积=(b-a)+4ab=a+b,,a+b=c,能证明勾股定理;故选C.【点睛】本题主要考查勾股定理的证明,解题的关键是利用构图法来证明勾股定理.8、B【解析】

根据菱形的判定方法、正方形的判定方法以及矩形的判定方法对各选项加以判断即可.【详解】A:对角线互相垂直的平行四边形是菱形,故选项错误,为假命题;B:对角线相等的菱形是正方形,故选项正确,为真命题;C:对角线互相垂直且相等的平行四边形是正方形,故选项错误,为假命题;D:对角线相等的平行四边形是矩形,故选项错误,为假命题;故选:B.【点睛】本题主要考查了菱形、正方形以及矩形的判定方法,熟练掌握相关概念是解题关键.9、D【解析】

连接BF,根据菱形的对角线平分一组对角求出∠BAC,∠BCF=∠DCF,四条边都相等可得BC=DC,再根据菱形的邻角互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF.【详解】解:如图,连接BF,在菱形ABCD中,∠BAC=∠BAD=×80°=40°,∠BCF=∠DCF,BC=DC,∠ABC=180°-∠BAD=180°-80°=100°,∵EF是线段AB的垂直平分线,∴AF=BF,∠ABF=∠BAC=40°,∴∠CBF=∠ABC-∠ABF=100°-40°=60°,∵在△BCF和△DCF中,,∴△BCF≌△DCF(SAS),∴∠CDF=∠CBF=60°,故选:D.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,综合性强,但难度不大,熟记各性质是解题的关键.10、C【解析】

依题意分别用和去代换原分式中的和,利用分式的基本性质化简即可.【详解】解:分别用和去代换原分式中的和,原式,可见新分式是原分式的.故选:C.【点睛】解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.11、D【解析】试题分析:A.对角线互相垂直的四边形不一定是菱形,故本选项错误;B.一组对边相等,另一组对边平行的四边形不一定是平行四边形,也可能是等腰梯形,故本选项错误;C.对角线相等的四边形不一定是矩形,例如等腰梯形,故本选项错误;D.对角线互相垂直平分且相等的四边形是正方形,故本选项正确.故选D.考点:命题与定理.12、B【解析】

根据众数、中位数和平均数的定义即可得出答案.【详解】根据题意可得:众数为0和2,中位数为(1+2)÷2=1.5,平均数为(0×3+1×2+2×3+3×2)÷10=1.4,故答案选择B.【点睛】本题考查的数众数、中位数和平均数,比较简单,注意求中位数之前要先对数组进行排序.二、填空题(每题4分,共24分)13、1.【解析】

首先根据题意画出图形,过A,D作下底BC的垂线,从而可求得BE的长,根据勾股定理求得AB的长,这样就可以求得等腰梯形的周长了.【详解】解:过A,D作下底BC的垂线,

则BE=CF=(16-10)=3cm,

在直角△ABE中根据勾股定理得到:

AB=CD==5,

所以等腰梯形的周长=10+16+5×2=1cm.

故答案为:1.【点睛】本题考查等腰梯形的性质、勾股定理.注意掌握数形结合思想的应用.14、-4或1【解析】分析:点M、N的纵坐标相等,则直线MN在平行于x轴的直线上,根据两点间的距离,可列出等式|x-1|=5,从而解得x的值.解答:解:∵点M(1,3)与点N(x,3)之间的距离是5,∴|x-1|=5,解得x=-4或1.故答案为-4或1.15、1【解析】

过点D作DE∥AB,交BC于点E.根据等腰梯形的性质可得到△CDE是等腰三角形,根据三线合一性质即得到CF=DF,从而可求得其较小底角的度数.【详解】解:如图,DF是等腰梯形ABCD的高,过点D作DE∥AB,交BC于点E.∵AD//BC,DE∥AB,∴四边形ABED是平行四边形,∴AB=DE,∴CD=DE,∵DF⊥BC,∴EF=CF,∵BC-AD=2DF,∴CF=DF,∴△CDF是等腰直角三角形,∴∠C=1°.故答案为:1.【点睛】此题考查等腰梯形的性质、梯形中常见的辅助线的作法、平行四边形的判定与性质,等腰直角三角形的判定与性质,正确作出辅助线是解答本题的关键.16、【解析】

先根据得出,再求出的度数,由即可得出结论.【详解】,,,,,.故答案为:.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.17、a≥1【解析】

根据二次根式有意义的条件可得a-1≥0,再解不等式即可.【详解】由题意得:a-1≥0,解得:a≥1,故答案为:a≥1.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.18、a(x+5)(x-5)【解析】

先公因式a,然后再利用平方差公式进行分解即可.【详解】故答案为a(x+5)(x-5).三、解答题(共78分)19、见解析.【解析】

根据平行四边形性质得出AD∥BC,且AD=BC,推出AF∥EC,AF=EC,根据平行四边形的判定推出即可.【详解】解:证明:∵四边形是平行四边形,∴,且,∴,∵,∴,∴四边形是平行四边形【点睛】此题考查平行四边形的判定与性质,解题关键在于掌握判定法则20、(1)x+1;(2)m-3,-4.【解析】分析:(1)按照分式混合运算的相关运算法则进行计算即可;(2)先按照分式混合运算的相关运算法则将原式化简,再代值计算即可.详解:(1)原式===;(2)原式==,当m=-1时,原式=-1-3=-4.点睛:熟记“分式混合运算的相关运算法则”是解答本题的关键.21、,.【解析】

先进行分式混合运算,再由已知得出,代入原式进行计算即可.【详解】原式====,由a满足得,故原式=.【点睛】本题考查了分式的混合运算——分式的化简求值,熟练掌握运算法则以及运算顺序是解题的关键.22、证明见解析.【解析】

根据平行四边形的性质可得:AB=CD,AD∥BC,根据平行线性质和角平分线性质求出∠ABE=∠AEB,推出AB=AE,同理求出DF=CD,即可证明AE=DF.【详解】证明:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE,同理可得:DF=CD,∴AE=DF,即AF+EF=DE+EF,∴AF=DE.【点睛】本题考查了平行四边形性质,平行线性质,等腰三角形的性质和判定等知识点的应用,能综合运用性质进行推理是解此题的关键,题目比较典型,难度适中.23、见解析【解析】

由平行四边形的性质得出OA=OC,AD=BC,AD∥BC,得∠DAE=∠BCF,由E,F分别是OA,OC的中点得AE=CF,由SAS证明△ADE≌△CBF即可;【详解】证明:∵四边形ABCD是平行四边形∴AD=BC,AD∥BC,OA=OC∴∠DAE=∠BCF又∵E,F分别是OA,OC的中点∴AE=CF在△ADE和△CBF中AD=CD∴△ADE≌△CBF(SAS).【点睛】本题考查了平行四边形的判定与性质、全等三角形的判定;熟练掌握平行四边

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论