




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年青海省西宁市第二十一中学八年级数学第二学期期末调研试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.已知点在反比例函数的图象上,则下列点也在该函数图象上的是()A. B. C. D.2.当k<0时,一次函数y=kx﹣k的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.下列四个选项中,错误的是()A.=4 B.=4 C.(﹣)2=4 D.()2=44.如图.在菱形ABCD中,对角线AC,BD交于点O,下列说法错误的是()A.AB∥DCB.AC=BDC.AC⊥BDD.OA=OC5.如图,为等边三角形,,、相交于点,于点,且,,则的长为()A.7 B.8 C.9 D.106.如图,矩形纸片中,,将沿折叠,使点落在点处,交于点,则的长等于()A. B. C. D.7.下列条件中,不能判定四边形是平行四边形的是()A.对角线互相平分 B.两组对边分别相等C.对角线互相垂直 D.一组对边平行,一组对角相等8.有下列的判断:①△ABC中,如果a2+b2≠c2,那么△ABC不是直角三角形②△ABC中,如果a2-b2=c2,那么△ABC是直角三角形③如果△ABC是直角三角形,那么a2+b2=c2以下说法正确的是()A.①②B.②③C.①③D.②9.如图,从几何图形的角度看,下列这些图案既是中心对称图形又是轴对称图形的是()A. B. C. D.10.在下列汽车标志中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.11.已知正比例函数的图象如图所示,则一次函数y=mx+n图象大致是()A. B.C. D.12.如图,过点的一次函数的图象与正比例函数的图象相交于点则这个一次函数的解析式是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,B、E、F、D四点在同一条直线上,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为_____cm.14.将点先向左平移6个单位,再向下平移4个单位得到点,则的坐标是__.15.比较大小:_______2(填“>”或“<”).16.如图,小华将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为_________.17.如图,有公共顶点A、B的正五边形和正六边形,连接AC交正六边形于点D,则∠ADE的度数为___.18.如图,△ABC是等腰直角三角形,∠A=90°,点P.Q分別是AB、AC上的动点,且满足BP=AQ,D是BC的中点,当点P运动到___时,四边形APDQ是正方形.三、解答题(共78分)19.(8分)用适当的方法解下列方程:(2x-1)(x+3)=1.20.(8分)作平行四边形ABCD的高CE,B是AE的中点,如图.(1)小琴说:如果连接DB,则DB⊥AE,对吗?说明理由.(2)如果BE:CE=1:,BC=3cm,求AB.21.(8分)A、B两店分另选5名销售员某月的销售额(单位:万元)进行分析,数据如下图表(不完整):平均数中位数众数A店8.5B店810(1)根据图a数据填充表格b所缺的数据;(2)如果A店想让一半以上的销售员达到销售目标,你认为月销售额定为多少合适?说明理由.22.(10分)定义:点关于原点的对称点为,以为边作等边,则称点为的“等边对称点”;(1)若,求点的“等边对称点”的坐标;(2)若点是双曲线上动点,当点的“等边对称点”点在第四象限时,①如图(1),请问点是否也会在某一函数图象上运动?如果是,请求出此函数的解析式;如果不是,请说明理由;②如图(2),已知点,,点是线段上的动点,点在轴上,若以、、、这四个点为顶点的四边形是平行四边形时,求点的纵坐标的取值范围.23.(10分)为了解某校八年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2两幅尚不完整的统计图.(1)本次抽测的男生有人,抽测成绩的众数是;(2)请你将图2的统计图补充完整;(3)若规定引体向上5次以上(含5次)为体能达标,则该校400名八年级男生中估计有多少人体能达标?24.(10分)某校初中部三个年级共挑选名学生进行跳绳测试,其中七年级人,八年级人,九年级人,体育老师在测试后对测试成绩进行整理,得到下面统计图表.年级平均成绩中位数众数七年级78.5m85八年级807882九年级828584(1)表格中的落在组(填序号);①;②;③;④;⑤;⑥;⑦(2)求这名学生的平均成绩;(3)在本次测试中,八年级与九年级都只有位学生跳下,判断这两位学生成绩在自己所在年级参加测试学生中的排名,谁更考前?请简要说明理由.25.(12分)(感知)如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.(拓展)如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.(应用)如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,菱形CEFG的面积是_______.(只填结果)26.如图,在平面直角坐标系中,为坐标原点,矩形的顶点,将矩形的一个角沿直线折叠,使得点落在对角线上的点处,折痕与轴交于点.(1)求直线所对应的函数表达式;(2)若点在线段上,在线段上是否存在点,使以为顶点的四边形是平行四边形?若存在,请求出点的坐标;若不存在,请说明理由.
参考答案一、选择题(每题4分,共48分)1、D【解析】
先把点(2,3)代入反比例函数,求出k的值,再根据k=xy为定值对各选项进行逐一检验即可.【详解】∵点(2,−3)在反比例函数的图象上,∴k=2×(−3)=-1.A、∵1×5=5≠−1,∴此点不在函数图象上;B、∵-1×5=-5=−1,∴此点不在函数图象上;C、∵3×2=1≠−1,∴此点不在函数图象上;D、∵(−2)×3=-1,∴此点在函数图象上.故选:D.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.2、C【解析】试题分析:∵k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限.故选C.考点:一次函数图象与系数的关系.3、D【解析】
根据二次根式的性质与乘方的意义,即可求得答案,注意排除法在解选择题中的应用.【详解】解:A、=4,正确,不合题意;B、=4,正确,不合题意;C、(﹣)2=4,正确,不合题意;D、()2=16,故原式错误,符合题意;故选D.【点睛】此题考查了二次根式的性质以及乘方的意义.此题难度不大,注意掌握二次根式的性质与化简是解此题的关键.4、B【解析】A.菱形的对边平行且相等,所以AB∥DC,故本选项正确;B.菱形的对角线不一定相等;C.菱形的对角线互相垂直,所以AC⊥BD,故本选项正确;D.菱形的对角线互相平分,所以OA=OC,故本选项正确.故选B.5、C【解析】
分析:由已知条件,先证明△ABE≌△CAD得∠BPQ=60°,可得BP=2PQ=8,AD=BE.则易求.【详解】解:∵△ABC为等边三角形,∴AB=CA,∠BAE=∠ACD=60°;又∵AE=CD,在△ABE和△CAD中,∴△ABE≌△CAD(SAS);∴BE=AD,∠CAD=∠ABE;∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;∵BQ⊥AD,∴∠AQB=10°,则∠PBQ=10°−60°=30°∵PQ=3,∴在Rt△BPQ中,BP=2PQ=8;又∵PE=1,∴AD=BE=BP+PE=1.故选:C.【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质、含有30°的直角三角形的性质,解题的关键是证明△BAE≌△ACD.6、B【解析】
根据矩形的性质可得AD∥BC,再由平行线及折叠的性质可得∠DAC=∠ACF,得到AF=CF,在Rt△CDF中,运用勾股定理列出方程即可解答.【详解】解:∵四边形ABCD是矩形,∴AD∥BC,∠D=90°,AD=BC=6,DC=AB=4,∴∠DAC=∠ACB又∵△AEC是由△ABC折叠而得,∴∠ACF=∠ACB∴∠DAC=∠ACF∴AF=CF设DF=x,则CF=AF=6-x,∴在Rt△CDF中,,即解得:,即故答案为:B.【点睛】本题考查了矩形中的折叠问题,涉及矩形的性质,等腰三角形的判定以及折叠的性质,勾股定理的运用,解题的关键是根据矩形及折叠的性质得到AF=CF.7、C【解析】
利用平行四边形的判定可求解.【详解】A、对角线互相平分的四边形是平行四边形,故该选项不符合题意;B、两组对边分别相等的四边形是平行四边形,故该选项不符合题意;C、对角线互相垂直的四边形不一定是平行四边形,故该选项符合题意;D、一组对边平行,一组对角相等,可得另一组对角相等,由两组对角相等的四边形是平行四边形,故该选项不符合题意;故选C.【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定是本题的关键.8、D【解析】【分析】欲判断三角形是否为直角三角形,这里给出三边的长,需要验证两小边的平方和等于最长边的平方即可.【详解】①c不一定是斜边,故错误;②正确;③若△ABC是直角三角形,c不是斜边,则a2+b2≠c2,故错误,所以正确的只有②,故选D.【点睛】本题考查了勾股定理以及勾股定理的逆定理,熟练掌握勾股定理以及勾股定理的逆定理的内容是解题的关键.9、B【解析】
根据轴对称图形和中心对称图形的定义对各个选项一一判断即可得出答案.【详解】A.是轴对称图形,不是中心对称图形;B.既是轴对称图形,又是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.【点睛】本题考查了中心对称图形和轴对称图形的识别.熟练应用中心对称图形和轴对称图形的概念进行判断是解题的关键.10、A【解析】
根据中心对称图形和轴对称图形的概念逐一进行分析即可.【详解】A、是中心对称图形,也是轴对称图形,故符合题意;B、不是中心对称图形,是轴对称图形,故不符合题意;C、不是中心对称图形,是轴对称图形,故不符合题意;D、不是中心对称图形,是轴对称图形,故不符合题意,故选A.【点睛】本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.11、C【解析】
利用正比例函数的性质得出>0,根据m、n同正,同负进行判断即可.【详解】.解:由正比例函数图象可得:>0,mn同正时,y=mx+n经过一、二、三象限;mn同负时,过二、三、四象限,故选C.【点睛】本题考查了正比例函数的性质,熟练掌握正比例函数的性质是解题的关键.12、A【解析】
根据正比例函数图象确定B点坐标再根据图象确定A点的坐标,设出一次函数解析式,代入一次函数解析式,即可求出.【详解】解:∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b,∵一次函数的图象过点A(0,3),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组
,解得
,则这个一次函数的解析式为y=-x+3,故选:A.【点睛】此题主要考查了待定系数法求一次函数解析式,解决问题的关键是利用一次函数的特点,来列出方程组,求出未知数,即可写出解析式.二、填空题(每题4分,共24分)13、1.【解析】
根据正方形的面积可用对角线进行计算解答即可.【详解】解:连接AC,BD交于点O,∵B、E、F、D四点在同一条直线上,∴E,F在BD上,∵正方形AECF的面积为50cm2,∴AC2=50,AC=10cm,∵菱形ABCD的面积为120cm2,∴=120,BD=24cm,所以菱形的边长AB==1cm.故答案为:1.【点睛】此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.14、【解析】
根据向上平移,纵坐标加,向左平移,横坐标减进行计算即可.【详解】解:将点A(4,3)先向左平移6个单位,再向下平移4个单位得到点A1,则A1的坐标是(4-6,3-4),即(-2,-1),故答案为:(-2,-1).【点睛】本题考查了点的坐标平移,根据上加下减,右加左减,上下平移是纵坐标变化,左右平移是横坐标变化,熟记平移规律是解题的关键.15、<【解析】试题解析:故答案为:16、17米.【解析】试题分析:根据题意画出示意图,设旗杆高度为x,可得AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.试题解析:设旗杆高度为x,则AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,解得:x=17,即旗杆的高度为17米.故答案为17米.考点:勾股定理的应用.17、84°.【解析】
据正多边形的内角,可得∠ABE、∠E、∠CAB,根据四边形的内角和,可得答案.【详解】正五边形的内角是∠ABC==108°,∵AB=BC,∴∠CAB=36°,正六边形的内角是∠ABE=∠E==120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°﹣120°﹣120°﹣36°=84°,故答案为84°.【点睛】本题考查了多边形的内角与外角,利用求多边形的内角得出正五边形的内角、正六边形的内角是解题关键.18、AB的中点.【解析】
若四边形APDQ是正方形,则DP⊥AP,得到P点是AB的中点.【详解】当P点运动到AB的中点时,四边形APDQ是正方形;理由如下:∵∠BAC=90°,AB=AC,D为BC中点,∴AD⊥BC,AD=BD=DC,∠B=∠C=45°,∴△ABD是等腰直角三角形,当P为AB的中点时,DP⊥AB,即∠APD=90°,又∵∠A=90°,∠PDQ=90°,∴四边形APDQ为矩形,又∵DP=AP=AB,∴矩形APDQ为正方形,故答案为AB的中点.【点睛】此题考查正方形的判定,等腰直角三角形,解题关键在于证明△ABD是等腰直角三角形三、解答题(共78分)19、x2=-,x2=2.【解析】
先把方程化为一般式,然后利用因式分解法解方程.【详解】解:2x2+5x-7=0,(2x+7)(x-2)=0,2x+7=0或x-2=0,所以x2=,x2=2.【点睛】本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).20、(1)BD⊥AE,理由见解析;(2)(cm).【解析】
(1)直接利用平行四边形的性质得出BD∥CE,进而得出答案;(2)直接利用勾股定理得出BE的长,进而得出答案.【详解】解:(1)对,理由:∵ABCD是平行四边形,∴CD∥AB且CD=AB.又B是AE的中点,∴CD∥BE且CD=BE.∴BD∥CE,∵CE⊥AE,∴BD⊥AE;(2)设BE=x,则CE=x,在Rt△BEC中:x2+(x)2=9,解得:x=,故AB=BE=(cm).【点睛】此题主要考查了平行四边形的性质以及勾股定理,正确应用平行四边形的性质是解题关键.21、(1)见解析;(2)月销售额定为8.5万合适,见解析.【解析】
(1)众数就是出现次数最多的数,据此即可求解;中位数就是大小处于中间位置的数,根据定义即可求解;(2)利用中位数的意义进行回答.【详解】(1)A店的中位数为8.5,众数为8.5;B店的平均数为:.故答案为:8.5;8.5;8.5;(2)如果A店想让一半以上的销售员达到销售目标,我认为月销售额定为8.5万合适.因为中位数为8.5,所以月销售额定为8.5万,有一半左右的营业员能达到销售目标.【点睛】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22、(1)或;(2)①;②或【解析】
(1)根据P点坐标得出P'的坐标,可求PP'=4;设C(m,n),有PC=P'C=24,通过解方程即可得出结论;(2)①设P(c,),得出P'的坐标,利用连点间的距离公式可求的长,设C(s,t),有,然后通过解方程可得,再根据消元c即可得xy=-6;②分AG为平行四边形的边和AG为平行四边形的对角线两种情况进行分类讨论.【详解】解:(1)∵P(1,),
∴P'(-1,-),
∴PP'=4,
设C(m,n),
∴等边△PP′C,
∴PC=P'C=4,解得n=或-,
∴m=-1或m=1.
如图1,观察点C位于第四象限,则C(,-1).即点P的“等边对称点”的坐标是(,-1).(2)①设,∴,∴,设,,∴,∴,∴,∴,∴或,∴点在第四象限,,∴,令,∴,即;②已知,,则直线为,设点,设点,,即,,,构成平行四边形,点在线段上,;当为对角线时,平行四边形对角坐标之和相等;,,,即;当为边时,平行四边形,,,,即;当为边时,平行四边形,,,,而点在第三象限,,即此时点不存在;综上,或.【点睛】本题考查反比例函数的图象及性质,等边三角形的性质,新定义;理解题意,利用等边三角形的性质结合勾股定理求点C的坐标是关键,数形结合解题是求yc范围的关键.23、(1)50,5次;(2)见解析;(3)该校400名八年级男生中有288人体能达标【解析】分析:(1)根据4次的有10人,占20%,据此即可求得总人数,然后求得5次的人数,根据众数的定义即可求得众数;(2)根据(1)的结果即可作出图形;(3)利用400乘以对应的比例即可求解;详解:(1)抽测的总人数是:10÷20%=50(人),次数是5次的人数是:50-4-10-14-6=16(人),则众数是:5次;(2)补图如下.(3)该校350名八年级男生中估计能达标的人数是:400×=288(人);点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24、(1)④;(2)80;(3)八年级得分的那位同学名次较靠前,理由详见解析.【解析】
(1)根据题意,七年级由40人,则中位数应该在第20和21个人取平均值,即可得到答案;(2)利用加权平均数,即可求出100名学生的平均成绩;(3)由题意,八九年级人数一样,则比较中位数,即可得到答案.【详解】解:根据直方图可知,七年级第20和第21个人都落在;故答案为:④.(2)这名学生的平均成绩为:;(3)八年级得分的那位同学名次较靠前,理由如下:依题意得:八年级和九年级被挑选的学生人数相同,分别把两个年级的成绩按从高到低排列,由两个年级的中位数可知,八年级跳下的学生在该年级排名中上,而八年级跳下的学生在该年级排名中下,八年级得分的那位同学名次较靠前.【点睛】本题考查了众数,中位数,平均数,熟练掌握众数,中位数,平均数的定义是解题的关键.25、见解析【解析】试题分析:探究:由四边形ABCD、四边形CEFG均为菱形,利用SAS易证得△BCE≌△DCG,则可得BE=DG;
应用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面积,继而求得答案.试题解析:探究:∵四边形ABCD、四边形CEFG均为菱形,
∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.
∵∠A=∠F,
∴∠BCD=∠ECG.
∴∠BCD-∠ECD=∠ECG-∠ECD,
即∠BCE=∠DCG.
在△BCE和△DCG中,∴△BCE≌△DCG(SAS
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 未来五年金融科技行业发展趋势分析
- 授信尽职免责管理办法
- 推广良种经费管理办法
- 提成管理办法附件包括
- 援疆干部住房管理办法
- 支援医院医师管理办法
- 收尾项目人员管理办法
- 改变土地用途管理办法
- 政务大厅应急管理办法
- 新房入住保洁管理办法
- 2024 入党积极分子预备党员发展对象培训考试题库答案
- 水库三个责任人培训课件
- 糖尿病护理和管理
- 2025年呼和浩特市公安局招聘警务辅助人员考试笔试试题(含答案)
- 党的理论知识考试题库及答案(2025年)
- 《子宫颈癌筛查规范(2025年版)》解读
- 2025年广东省中考化学真题(解析版)
- 照明组装生产车间试题带答案
- 财务部门半年工作复盘
- 江苏南京金陵中学2024~2025学年高一下册期末考试数学试题学生卷
- 福建福州第八中学2024~2025学年高一下册期末数学试题
评论
0/150
提交评论