




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南省周口市郸城县数学八年级下册期末达标检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,在中,对角线,交于点.若,,,则的周长为()A. B. C. D.2.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.1,, B.3,4,5 C.5,12,13 D.2,2,33.化简20的结果是()A.52 B.210 C.24.如图,在矩形中,,,点同时从点出发,分别沿及方向匀速运动,速度均为每秒1个单位长度,当一个点到达终点时另一个点也停止运动,连接.设运动时间为秒,的长为,则下列图象能大致反映与的函数关系的是()A. B.C. D.5.已知一组数据2,3,4,x,1,4,3有唯一的众数4,则这组数据的中位数是()A.2 B.3 C.4 D.56.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%7.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=7,EF=3,则BC的长为()A.9 B.10 C.11 D.128.下列各组数据中的是三个数作为三角形的边长,其中能构成直角三角形的是()A.1,2,3 B.3,4,5 C.5,6,7 D.79.如图,直线过正方形的顶点,于点,于点,若,,则的长为()A. B. C. D.10.甲袋装有4个红球和1个黑球,乙袋装有6个红球、4个黑球和5个白球.这些球除了颜色外没有其他区别,分别搅匀两袋中的球,从袋中分别任意摸出一个球,正确说法是()A.从甲袋摸到黑球的概率较大B.从乙袋摸到黑球的概率较大C.从甲、乙两袋摸到黑球的概率相等D.无法比较从甲、乙两袋摸到黑球的概率11.若2019个数、、、…、满足下列条件:,,,…,,则(
)A.-5047 B.-5045 C.-5040 D.-505112.如图,点Р是边长为2的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,的最小值是()A.1 B. C.2 D.二、填空题(每题4分,共24分)13.甲、乙两名射击手的50次测试的平均成绩都是8环,方差分别是,则成绩比较稳定的是(填“甲”或“乙”)14.化简的结果为_____.15.对于两个不相等的实数a、b,定义一种新的运算如下:(a+b>0),如:3*2==,那么7*(6*3)=__.16.对分式和进行通分,它们的最简公分母是________.17.如图,在4×4正方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是______.18.点A(0,3)向右平移2个单位长度后所得的点A’的坐标为_____.三、解答题(共78分)19.(8分)A、B两城相距900千米,一辆客车从A城开往B城,车速为每小时80千米,半小时后一辆出租车从B城开往A城,车速为每小时120千米.设客车出发时间为t(小时)(1)若客车、出租车距A城的距离分别为y1、y2,写出y1、y2关于t的函数关系式;(2)若两车相距100千米时,求时间t;(3)已知客车和出租车在服务站D处相遇,此时出租车乘客小王突然接到开会通知,需要立即返回,此时小王有两种选择返回B城的方案,方案一:继续乘坐出租车到C城,C城距D处60千米,加油后立刻返回B城,出租车加油时间忽略不计;方案二:在D处换乘客车返回B城,试通过计算,分析小王选择哪种方式能更快到达B城?20.(8分)某工厂为了解甲、乙两个部门员工的生产技能情况,从甲、乙两个部门各随机抽取20名员工,进行生产技能测试,测试成绩(百分制)如下:甲
78
8674
81
75
76
87
70
75
90
75
79
81
70
74
80
86
69
83
77乙
93
7388
81
72
81
94
83
77
83
80
81
70
81
73
78
82
80
70
40(说明:成绩80分及以上为优秀,70-79分为良好,60-69分为合格,60分以下为不合格)(1)请填完整表格:部门平均数中位数众数甲78.375乙7880.5
(2)从样本数据可以推断出部门员工的生产技能水平较高,请说明理由.(至少从两个不同的角度说明推断的合理性).21.(8分)如图,在平行四边形ABCD中,AC,BD相交于点O,点E,F在AC上,且OE=OF.(1)求证:BE=DF;(2)当线段OE=_____时,四边形BEDF为矩形,并说明理由.22.(10分)已知关于x的一元二次方程(m为常数)(1)求证:不论m为何值,方程总有两个不相等的实数根;(2)若方程有一个根是2,求m的值及方程的另一个根.23.(10分)解方程(1)(2)x(3-2x)=4x-624.(10分)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:根据规定,笔试成绩和面试成绩分别按一定的百分比折和成综合成绩(综合成绩的满分仍为100分)(1)这6名选手笔试成绩的中位数是分,众数是分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.25.(12分)甲乙两人同时登山,甲乙两人距地面的高度(米与登山时间(分之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是米分钟,乙在地提速时距地面的高度为米;(2)直接写出甲距地面高度(米和(分之间的函数关系式;(3)若乙提速后,乙的速度是甲登山速度的3倍.请问登山多长时间时,乙追上了甲,此时乙距地的高度为多少米?26.某学校为了了解男生的体能情况,规定参加测试的每名男生从“实心球”,“立定跳远”,“引体向上”,“耐久跑1000米”四个项目中随机抽取一项作为测试项目.(1)八年(1)班的25名男生积极参加,参加各项测试项目的统计结果如图,参加“实心球”测试的男生人数是人;(2)八年(1)班有8名男生参加了“立定跳远”的测试,他们的成绩(单位:分)如下:95,100,82,90,89,90,90,85①“95,100,82,90,89,90,90,85”这组数据的众数是,中位数是.②小聪同学的成绩是92分,他的成绩如何?③如果将不低于90分的成绩评为优秀,请你估计八年级80名男生中“立定跳远”成绩为优秀的学生约为多少人?
参考答案一、选择题(每题4分,共48分)1、B【解析】
根据平行四边形的性质进行计算即可.【详解】解:在中,BO=BD=,CO=AC=2,∴的周长为:B0+CO+BC=+2+3=7.5故答案选:B【点睛】本题考查平行四边形的性质,熟练掌握平行四边形的性质和计算法则是解题关键.2、D【解析】分析:欲求证是否为直角三角形,利用勾股定理的逆定理即可.这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.详解:A、12+()2=3=()2,故是直角三角形,故错误;B、42+32=25=52,故是直角三角形,故错误;C、52+122=169=132,故是直角三角形,故错误;D、22+22=8≠32,故不是直角三角形,故正确.故选D.点睛:本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3、C【解析】
直接利用二次根式的乘法运算法则,计算得出答案.【详解】解:20=故选择:C.【点睛】此题主要考查了二次根式的乘法运算,正确化简二次根式是解题的关键.4、A【解析】
分三种情况讨论即可求解.【详解】解:当点A在AD上,点M在AB上,则d=t,(0≤t≤4);当点A在CD上,点M在AB上,则d=4,(4<t≤6);当点A在CD上,点M在BC上,则d=(10-t)=-t+10(6<t≤10);故选:A.【点睛】本题考查了动点问题的函数图象,根据点P的位置的不同,分三段讨论求解是解题的关键.5、B【解析】
根据题意由有唯一的众数4,可知x=4,然后根据中位数的定义求解即可.【详解】∵这组数据有唯一的众数4,∴x=4,∵将数据从小到大排列为:1,2,1,1,4,4,4,∴中位数为:1.故选B.【点睛】本题考查了众数、中位数的定义,属于基础题,掌握基本定义是关键.众数是一组数据中出现次数最多的那个数.当有奇数个数时,中位数是从小到大排列顺序后位于中间位置的数;当有偶数个数时,中位数是从小到大排列顺序后位于中间位置两个数的平均数.6、C【解析】试题解析:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=﹣2.5(不合题意舍去),答即该店销售额平均每月的增长率为50%;故选C.7、C【解析】分析:先证明AB=AF=7,DC=DE,再根据EF=AF+DE﹣AD求出AD,即可得出答案.详解:∵四边形ABCD是平行四边形,∴AB=CD=7,BC=AD,AD∥BC.∵BF平分∠ABC交AD于F,CE平分∠BCD交AD于E,∴∠ABF=∠CBF=∠AFB,∠BCE=∠DCE=∠CED,∴AB=AF=7,DC=DE=7,∴EF=AF+DE﹣AD=7+7﹣AD=3,∴AD=1,∴BC=1.故选C.点睛:本题考查了平行四边形的性质,等腰三角形的判定和性质等知识,解题的关键是熟练掌握这些知识的应用,属于常见题,中考常考题型.8、A【解析】
根据勾股定理的逆定理逐项分析即可.【详解】解:A、∵12+(2)2=(3)2,∴能构成直角三角形;B、(3)2+(4)2≠(5)2,∴不能构成直角三角形;C、52+62≠72,∴不能构成直角三角形;D、∵72+82≠92,∴不能构成直角三角形.故选:A.【点睛】本题考查了勾股定理逆定理,如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形,在一个三角形中,即如果用a,b,c表示三角形的三条边,如果a2+b2=c2,那么这个三角形是直角三角形.9、C【解析】
通过证明△ABE≌△DAF,得AE=DF,AF=BE,进而求出EF.【详解】解:∵正方形ABCD,
∴AD=AB,∠DAB=90°,
∵BE⊥l于点E,DF⊥l于点F,
∴∠AFD=∠AEB=90°,
∴∠FAD+∠FDA=90°,且∠EAB+∠FAD=90°,
∴∠FDA=∠EAB,
在△ABE和△ADF中,
∠AFD=∠AEB,∠FDA=∠EAB,AD=AB,
∴△ABE≌△DAF(AAS),,,,故选C.【点睛】本题考查了正方形的性质以及全等三角形的判定和勾股定理等知识,解本题的关键是证明△ABE≌△DAF.10、B【解析】试题分析:根据概率的计算法则可得:甲袋P(摸到黑球)=;乙袋P(摸到黑球)=.根据可得:从乙袋摸到黑球的概率较大.考点:概率的计算11、A【解析】
通过前面几个数的计算,根据数的变化可得出从第3个数开始,按-2,-3依次循环,按此规律即可得出的值,【详解】解:依题意,得:,,,,,,……由上可知,这2019个数从第三个数开始按−2,−3依次循环,故这2019个数中有1个2,1个−7,1009个−2,1008个−3,∴=2−7−2×1009−3×1008=−5047,故选:A.【点睛】本题主要考查了规律型:数字的变化类,找到规律是解题的关键.12、C【解析】
先作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值.然后证明四边形ABNM′为平行四边形,即可求出MP+NP=M′N=AB=1.【详解】解:如图,作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N的长.∵菱形ABCD关于AC对称,M是AB边上的中点,∴M′是AD的中点,又∵N是BC边上的中点,∴AM′∥BN,AM′=BN,∴四边形ABNM′是平行四边形,∴M′N=AB=1,∴MP+NP=M′N=1,即MP+NP的最小值为1,故选:C.【点睛】本题考查的是轴对称−最短路线问题及菱形的性质,熟知两点之间线段最短的知识是解答此题的关键.二、填空题(每题4分,共24分)13、甲【解析】试题分析:方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.因此,∵,∴成绩比较稳定的是甲.14、x【解析】
先把两分数化为同分母的分数,再把分母不变,分子相加减即可.【详解】,故答案为x.15、【解析】试题分析:∵,,∴,即7*(6*3)=,考点:算术平方根.16、【解析】
根据确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母即可得出答案.【详解】解:分式和的最简公分母是,故答案为:.【点睛】本题考查了最简公分母的定义:通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.17、【解析】
根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有12个,而能构成一个轴对称图形的有2个情况(如图所示)∴使图中黑色部分的图形构成一个轴对称图形的概率是.18、(2,3)【解析】根据横坐标右移加,左移减;纵坐标上移加,下移减可得A′的坐标为(0+2,3).解:点A(0,3)向右平移2个单位长度后所得的点A′的坐标为(0+2,3),
即(2,3),
故答案为:(2,3).三、解答题(共78分)19、(1)y1=80t,y2=﹣120t+960;(2)两车相距100千米时,时间为4.3小时或5.3小时;(3)选择方案一能更快到达B城,理由见解析【解析】
(1)根据路程=速度×时间,即可得出y1、y2关于t的函数关系式;
(2)分两种情况讨论:①y2-y1=100;②y1-y2=100,据此列方程解答即可;
(3)先算出客车和出租车在服务站D处相遇的时间,再分别求出方案一、方案二所需的时间进行比较即可.【详解】(1)由题意得y1=80ty2=900﹣120(t﹣0.5)=﹣120t+960(2)如果两车相距100千米,分两种情况:①y2﹣y1=100,即﹣120t+960﹣80t=100解得t=4.3②y1﹣y2=100,即80t﹣(﹣120t+960)=100解得t=5.3所以,两车相距100千米时,时间为4.3小时或5.3小时.(3)如果两车相遇,即y1=y2,80t=﹣120t+960,解得t=4.8此时AD=80×4.8=384(千米),BD=900﹣384=516(千米)方案一:t1=(2×60+516)÷120=5.3(小时)方案二:t2=516÷80=6.45(小时)∵t2>t1∴方案一更快答:小王选择方案一能更快到达B城.【点睛】本题考查了一元一次方程的应用以及一次函数的应用,解题的关键根据数量关系找出方程(或函数关系式).本题属于中档题,难度不大,但较繁琐,解决此类型题目时,根据数量关系列出方程(或函数关系式),再一步步的进行计算即可.20、(1)77.5,81;(2)乙,理由见解析.【解析】
(1)根据中位数和众数的定义分别进行解答即可;(2)从中位数和众数方面分别进行分析,即可得出乙部门员工的生产技能水平较高.【详解】解:(1)根据中位数的定义可得:甲部门的中位数是第10、11个数的平均数,即=77.5;∵81出现了4次,出现的次数最多,∴乙部门的众数是81,填表如下:部门平均数中位数众数甲78.377.575乙7880.581故答案为:77.5,81;(2)从样本数据可以推断出乙部门员工的生产技能水平较高,理由为:①乙部门在技能测试中,中位数较高,表示乙部门员工的生产技能水平较高;②乙部门在生产技能测试中,众数高于甲部门,所以乙部门员工的生产技能水平较高;故答案为:乙.【点睛】本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义以及用样本估计总体是解题的关键.21、(1)见解析;(2)OD.【解析】
(1)运用平行四边形性质,对角线相互平分,即可确定BO=OD,然后运用线段的和差即可求得BE=DF.(2)根据矩形对角线相等且相互平分,可确定OE=OD【详解】(1)证明:分别连接DE、BF∵四边形ABCD是平行四边形∴OB=OD又∵OE=OF∴四边形DEBF是平行四边形∴BE=DF(2)当OE=OD时,四边形BEDF是矩形∵OE=OF,OB=OD∴四边形BEDF是平行四边形又∵OE=OD,EF=2OE,BD=20D∴EF=BD∴四边形BEDF是矩形【点睛】本题主要考查了平行四边形额性质和矩形的判定,有一定难度,需要认真审题和分析.22、(1)见解析;(2)即m的值为0,方程的另一个根为0.【解析】
(1)可用根的判别式,计算判别式得到△=(m+2)2−4×1⋅m=m2+4>0,则方程有两个不相等实数解,于是可判断不论m为何值,方程总有两个不相等的实数根;(2)设方程的另一个根为t,利用根与系数的关系得到2+t=,2t=m,最终解出关于t和m的方程组即可.【详解】(1)证明:△=(m+2)2−4×1⋅m=m2+4,∵无论m为何值时m2≥0,∴m2+4≥4>0,即△>0,所以无论m为何值,方程总有两个不相等的实数根.(2)设方程的另一个根为t,根据题意得2+t=,2t=m,解得t=0,所以m=0,即m的值为0,方程的另一个根为0.【点睛】本题考查根的判别式和根于系数关系,对于问题(1)可用根的判别式进行判断,在判断过程中注意对△的分析,在分析时可借助平方的非负性;问题(2)可先设另一个根为t,用根于系数关系列出方程组,在求解.23、(1);(2).【解析】
(1)将方程移项得,在等式两边同时加上一次项系数一半的平方1,即可得出结论;(2)将方程移项得,提公因式后,即可得出结论.【详解】解:(1),移项,得:,等式两边同时加1,得:,即:,解得:,,(2),移项,得:,提公因式,得:,解得:,,故答案为:(1),;(2),.【点睛】本题考查配方法、因式分解法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.因式分解法的一般步骤:(1)移项,将方程右边化为0;(2)再把左边运用因式分解法化为两个一次因式的积;(3)分别令每个因式等于零,得到一元一次方程组;(4)分别解这两个一元一次方程,得到方程的解.24、(1)84.5,84;(2)笔试成绩和面试成绩各占的百分比是40%,60%;(3)2号选手的综合成绩是89.6(分),3号选手的综合成绩是85.2(分),4号选手的综合成绩是90(分),5号选手的综合成绩是81.6(分),6号选手的综合成绩是83(分),综合成绩排序前两名人选是4号和2号.【解析】
(1)根据中位数和众数的定义即把这组数据从小到大排列,再找出最中间两个数的平均数就是中位数,再找出出现的次数最多的数即是众数;(2)先设笔试成绩和面试成绩各占的百分百是x,y,根据题意列出方程组,求出x,y的值即可;(3)根据笔试成绩和面试成绩各占的百分比,分别求出其余五名选手的综合成绩,即可得出答案.【详解】(1)把这组数据从小到大排列为,80,84,84,85,90,92,最中间两个数的平均数是(84+85)÷2=84.5(分),则这6名选手笔试成绩的中位数是84.5,84出现了2次,出现的次数最多,则这6名选手笔试成绩的众数是84;故答案为:84.5,84;(2)设笔试成绩和面试成绩各占的百分百是x,y,根据题意得:,解得:,故笔试成绩和面试成绩各占的百分比是40%,60%;(3)2号选手的综合成绩是92×0.4+88×0.6=89.6(分),3号选手的综合成绩是84×0.4+86×0.6=85.2(分),4号选手的综合成绩是90×0.4+90×0.6=90(分),5号选手的综合成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论