-度江西省赣县2024年数学八年级下册期末复习检测试题含解析_第1页
-度江西省赣县2024年数学八年级下册期末复习检测试题含解析_第2页
-度江西省赣县2024年数学八年级下册期末复习检测试题含解析_第3页
-度江西省赣县2024年数学八年级下册期末复习检测试题含解析_第4页
-度江西省赣县2024年数学八年级下册期末复习检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

——度江西省赣县2024年数学八年级下册期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一个多边形的每个外角都等于45°,则这个多边形的边数是()A.11 B.10 C.9 D.82.方程x2+x﹣1=0的一个根是()A.1﹣5 B.1-52 C.﹣1+53.如图,在中,已知,,平分交边于点,则边的长等于()A.4cm B.6cm C.8cm D.12cm4.如图,这是用面积为24的四个全等的直角三角形△ABE,△BCF,△CDG和△DAH拼成的“赵爽弦图”,如果AB=10,那么正方形EFGH的边长为()A.1 B.2 C.3 D.45.如图,在平行四边形ABCD中,∠A=40°,则∠C大小为()A.40° B.80° C.140° D.180°6.如图,在平面直角坐标系中,已知点A(1,3),B(n,3),若直线y=2x与线段AB有公共点,则n的值不可能是()A.1.4 B.1.5 C.1.6 D.1.77.如下是一种电子记分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.8.对于方程:,下列判断正确的是()A.只有一个实数根 B.有两个不同的实数根C.有两个相同的实数根 D.没有实数根9.如图,在平面直角坐标系中,反比例函数的图象经过,两点,,两点的纵坐标分别为3,1,若的中点为点,则点向左平移________个单位后落在该反比例函数图象上?()A. B.2 C.1 D.10.关于的方程(为常数)有两个相等的实数根,那么k的值为()A. B. C. D.11.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,且BD=2CD,BC=9cm,则点D到AB的距离为()A.3cm B.2cm C.1cm D.4.5cm12.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠BCE=28°,则∠D=()A.28° B.38° C.52° D.62°二、填空题(每题4分,共24分)13.已知,则________.14.确定一个的值为________,使一元二次方程无实数根.15.若数据,,…,的方差为6,则数据,,…,的方差是______.16.如图,将一张矩形纸片ABCD沿EF折叠后,点C落在AB边上的点G处,点D落在点H处.若∠1=62°,则图中∠BEG的度数为_____.17.如图,菱形ABCD中,DE⊥AB,垂足为点E,连接CE.若AE=2,∠DCE=30°,则菱形的边长为________.18.化简:_________.三、解答题(共78分)19.(8分)因式分解:__________.20.(8分)如图,在平面直角坐标系中,的直角边在轴上,.点的坐标为,点的坐标为,是边的中点,函数的图象经过点.(1)求的值;(2)将绕某个点旋转后得到(点,,的对应点分别为点,,),且在轴上,点在函数的图象上,求直线的表达式.21.(8分)如图,将平行四边形ABCD的AD边延长至点E,使DE=AD,连接CE,F是BC边的中点,连接FD.求证:四边形CEDF是平行四边形.22.(10分)近年来雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注.某商场计划购进一批、两种空气净化装置,每台种设备价格比每台种设备价格多0.7万元,花3万元购买种设备和花7.2万元购买种设备的数量相同.(1)求种、种设备每台各多少万元?(2)根据销售情况,需购进、两种设备共20台,总费用不高于15万元,求种设备至少要购买多少台?(3)若每台种设备售价0.6万元,每台种设备售价1.4万元,在(2)的情况下商场应如何进货才能使这批空气净化装置售完后获利最多?23.(10分)已知,一次函数的图象与x轴、y轴分别交于点A和B.求A,B两点的坐标,并在如图的坐标系中画出函数的图象;若点C在第一象限,点D在x轴的正半轴上,且四边形ABCD是菱形,直接写出C,D两点的坐标.24.(10分)如图,在矩形纸片ABCD中,已知边AB=3,BC=5,点E在边CD上,连接AE,将四边形ABCE沿直线AE折叠,得到多边形AB′C′E,且B′C′恰好经过点D.求线段CE的长度.25.(12分)如图,平面直角坐标系中,,,点是轴上点,点为的中点.(1)求证:;(2)若点在轴正半轴上,且与的距离等于,求点的坐标;(3)如图2,若点在轴正半轴上,且于点,当四边形为平行四边形时,求直线的解析式.26.如图,在△ABC中,AD平分∠BAC交BC于点D,DE⊥AB于点E,DF⊥AC于点F,∠MDN的两边分别与AB,AC相交于M,N两点,且∠MDN+∠BAC=180°.(1)求证AE=AF;(2)若AD=6,DF=2,求四边形AMDN的面积.

参考答案一、选择题(每题4分,共48分)1、D【解析】

根据多边形的外角和等于,用360除以一个多边形的每个外角的度数,求出这个多边形的边数是多少即可.【详解】解:,这个多边形的边数是1.故选:D.【点睛】此题主要考查了多边形的内角与外角,要熟练掌握,解答此题的关键是要明确:多边形的外角和等于.2、D【解析】

利用求根公式解方程,然后对各选项进行判断.【详解】∵a=1,b=﹣1,c=﹣1,∴△=b2﹣4ac=12﹣4×(﹣1)=5,则x=-1±5所以x1=-1+52,x2故选:D.【点睛】本题考查了解一元二次方程﹣公式法,解题关键在于掌握运算法则.3、A【解析】

首先根据平行四边形的性质,得出,,,进而得出∠DAE=∠AEB,然后得出∠BAE=∠AEB,根据等腰三角形的性质,即可得解.【详解】∵平行四边形ABCD∴,,∴∠DAE=∠AEB又∵平分∴∠BAE=∠DAE∴∠BAE=∠AEB∴AB=BE又∵,,∴CD=4cm故答案为A.【点睛】此题主要考查平行四边形和等腰三角形的性质,熟练掌握,即可解题.4、B【解析】

根据正方形EFGH的面积=正方形ABCD的面积﹣4S△ABE=4,求4的算术平方根即可得到结论.【详解】解:∵正方形EFGH的面积=正方形ABCD的面积﹣4S△ABE=102﹣4×24=4,∴正方形EFGH的边长=2,故选:B.【点睛】本题考查了正方形的面积,三角形的面积,正确的识别图形是解题的关键.5、A【解析】

由平行四边形的性质:对角相等,得出∠C=∠A.【详解】解:∵四边形ABCD是平行四边形,∴∠C=∠A=40°,故选A.【点睛】本题考查了平行四边形的性质,解答本题的关键是掌握平行四边形的对角相等.6、A【解析】

由直线y=2x与线段AB有公共点,可得出点B在直线上或在直线右下方,利用一次函数图象上点的坐标特征,即可得出关于n的一元一次不等式,解之即可得出n的取值范围即可判断.【详解】∵直线y=2x与线段AB有公共点,∴2n≥3,∴n≥.∵1.4<,∴n的值不可能是1.4.故选A.【点睛】本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于n的一元一次不等式是解题的关键.7、C【解析】

根据轴对称和中心对称图形的概念可判别.【详解】(A)既不是轴对称也不是中心对称;(B)是轴对称但不是中心对称;(C)是轴对称和中心对称;(D)是中心对称但不是轴对称故选:C8、B【解析】

原方程变形后求出△=b2-4ac的值,然后根据计算结果判断方程根的情况.【详解】∵x(x+1)=0,∴x2+x=0,∵a=1,b=1,c=0,∴△=b2-4ac=1-0=1>0∴方程有两个不相等的实数根.故选B.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.9、D【解析】

根据题意可以推出A,B两点的坐标,由此可得出M点的坐标,设平移n个单位,然后表示出平移后的坐标为(2-n,2),代入函数解析式,即可得到答案.【详解】由题意可得A(1,3),B(3,1),∴M(2,2),设M点向左平移n个单位,则平移后的坐标为(2-n,2),∴(2-n)×2=3,∴n=.故选:D.【点睛】本题主要考查了中点坐标的计算,反比例函数,细心分析即可.10、A【解析】

解:∵方程有两相等的实数根,∴△=b2-4ac=12-8k=0,解得:k=故选A.【点睛】本题考查根的判别式.11、A【解析】

如图,过点D作DE⊥AB于E,则点D到AB的距离为DE的长,根据已知条件易得DC=1.利用角平分线性质可得到DE=DC=1。【详解】解:如图,过点D作DE⊥AB于E,

∵BD:DC=2:1,BC=9,∵AD平分∠BAC,∠C=90°,

∴DE=DC=1.

故选:A.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,要注意DC的求法.12、D【解析】

由CE⊥AB得出∠CEB=90°,根据三角形内角和定理求出∠B,根据平行四边形的性质即可得出∠D的值.【详解】解:∵CE⊥AB,∴∠CEB=90°,∵∠BCE=28°,∴∠B=62°,∵四边形ABCD是平行四边形,∴∠D=∠B=62°,故选:D.【点睛】本题考查了三角形的内角和定理,垂直定义和平行四边形的性质,能求出∠B的度数和根据平行四边形的性质得出∠B=∠D是解此题的关键.二、填空题(每题4分,共24分)13、【解析】

由,即成比例的数的问题中,设出辅助参量表示另外两个量代入求值即可,【详解】解:因为,设则所以.故答案为:【点睛】本题考查以成比例的数为条件求分式的值是常规题,掌握辅助参量法是解题关键.14、【解析】

根据方程无实数根求出b的取值范围,再确定b的值即可.【详解】∵一元二次方程x2+2bx+1=0无实数根,∴4b2-4<0∴-1<b<1,因此,b可以取等满足条件的值.【点睛】此题考查了一元二次方程根的判别式的应用.此题难度不大,解题的关键是掌握当△<0时,一元二次方程没有实数根.15、1.【解析】

根据方差的定义进行求解,方差是用来衡量一组数据波动大小的量,每个数都加2,所以波动不会变,方差不变.【详解】原来的方差,现在的方差==1,方差不变.故答案为:1.【点睛】此题考查了方差,本题说明了当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.16、56°【解析】

根据矩形的性质可得AD//BC,继而可得∠FEC=∠1=62°,由折叠的性质可得∠GEF=∠FEC=62°,再根据平角的定义进行求解即可得.【详解】∵四边形ABCD是矩形,∴AD//BC,∴∠FEC=∠1=62°,∵将一张矩形纸片ABCD沿EF折叠后,点C落在AB边上的点G处,∴∠GEF=∠FEC=62°,∴∠BEG=180°-∠GEF-∠FEC=56°,故答案为56°.【点睛】本题考查了矩形的性质、折叠的性质,熟练掌握矩形的性质、折叠的性质是解题的关键.17、【解析】

由四边形ABCD为菱形性质得DC∥AB,则同旁内角互补,得∠CDE+∠DEB=180°,结合DE⊥AB,则DE⊥DC,已知∠DCE=30°,设DE=x,用勾股定理把DC、AD、和DE用含x的代数式表示,在Rt△AED中,利用勾股列关系式求得x=,则.【详解】解:∵四边形ABCD为菱形,∴DC∥AB,∴∠CDE+∠DEB=180°,∵DE⊥AB,∴DE⊥DC,∵∠DCE=30°,设DE=x,则EC=2x,

,∴AD=DC=,在Rt△AED中,有AD2=DE2+AE2,解得x=,,故答案为:.【点睛】本题考查菱形的基本性质,能够灵活运用勾股定理是本题关键.18、【解析】

分子分母同时约去公因式5xy即可.【详解】解:.

故答案为.【点睛】此题主要考查了分式的约分,关键是找出分子分母的公因式.三、解答题(共78分)19、【解析】

直接提取公因式3,进而利用平方差公式分解因式即可.【详解】解:3a2-27=3(a2-9)

=3(a+3)(a-3).

故答案为:3(a+3)(a-3).【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确掌握公式法分解因式是解题关键.20、(1)5;(4)y=4x-1.【解析】

(1)根据直角三角形的性质和坐标与图形的特点求得点的坐标,将其代入反比例函数解析式求得的值;(4)根据旋转的性质推知:,故其对应边、角相等:,,,由函数图象上点的坐标特征得到:,.结合得到,利用待定系数法求得结果.【详解】(1)∵Rt△ABC的直角边AB在x轴上,∠ABC=90°,点C的坐标为(5,4),∴点B的坐标为(5,0),CB=4.∵M是BC边的中点,∴点M的坐标为(5,4).∵函数的图像进过点M,∴k=5×4=5.(4)∵△ABC绕某个点旋转180°后得到△DEF,∴△DEF≌△ABC.∴DE=AB,EF=BC,∠DEF=∠ABC=90°.∵点A的坐标为(1,0),点B的坐标为(5,0),∴AB=4.∴DE=4.∵EF在y轴上,∴点D的横坐标为4.∵点D在函数的图象上,当x=4时,y=5.∴点D的坐标为(4,5).∴点E的坐标为(0,5).∵EF=BC=4,∴点F的坐标为(0,-1).设直线DF的表达式为y=ax+b,将点D,F的坐标代入,得解得.∴直线DF的表达式为y=4x-1.【点睛】本题考查了待定系数法求一次函数解析式,反比例函数图象上点的坐标特征,旋转的性质.解题时,注意函数思想和数形结合数学思想的应用.21、见解析.【解析】

利用平行四边形的性质得出AD=BC,AD∥BC,进而利用已知得出DE=FC,DE∥FC,即可证得四边形CEDF是平行四边形.【详解】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵DE=AD,F是BC边的中点,∴FC=BC=AD=DE,又∵DE∥FC,∴四边形CEDF是平行四边形.【点睛】本题主要考查了平行四边形的判定与性质,熟练应用平行四边形的判定方法是解题关键.22、(1)种设备每台0.5万元,种设备每台l.2万元;(2)种设备至少购买13台;(3)当购买种设备13台,种设备7台时,获利最多.【解析】

(1)设种设备每台万元,则种设备每台万元,根据“3万元购买种设备和花7.2万元购买种设备的数量相同”列分式方程即可求解;(2)设购买种设备台,则购买种设备台,根据总费用不高于15万元,列不等式求解即可;【详解】(1)设种设备每台万元,则种设备每台万元,根据题意得:,解得,经检验,是原方程的解,∴.则种设备每台0.5万元,种设备每台l.2万元;(2)设购买种设备台,则购买种设备台,根据题意得:,解得:,∵为整数,∴种设备至少购买13台;(3)每台种设备获利(万元),每台种设备获利(万元),∵,∴购进种设备越多,获利越多,∴当购买种设备13台,种设备(台)时,获利最多.【点睛】本题主要考查了二元一次方程组和一元一次不等式组的应用,关键是弄懂题意,找出题目中的关键语句,列出方程和不等式.23、(1)A,B,画图见解析;(2),.【解析】

(1)先求出A,B两点的坐标,再画函数图象;(2)根据图形,结合勾股定理和菱形性质推出边长,得到C.D的坐标.【详解】解:将代入,可得;

将,代入,可得;

点A的坐标为,点B的坐标为,

如图所示,直线AB即为所求;

由点A的坐标为,点B的坐标为,可得,,中,,四边形ABCD是菱形,,,,.【点睛】本题考核知识点:一次函数与菱形.解题关键点:熟记菱形的判定与性质.24、【解析】

设CE=EC'=x,则DE=3−x,由△ADB''∽△DEC,可得ADDE=DB'EC′,列出方程即可解决问题;【详解】设CE=EC'=x,则DE=3−x,∵∠ADB'+∠EDC'=90°,∠B'AD+∠ADB'=90°,∴∠B'AD=∠EDC',∵∠B'=∠C'=90°,AB'=AB=3,AD=5,∴DB'==,∴△ADB'∽△DEC`,∴,∴,∴x=.∴CE=.【点睛】此题考查翻折变换(折叠问题),相似三角形的判定与性质,解题关键在于利用勾股定理进行计算25、(1)见解析;(2);(3)【解析】

(1)由A与B的坐标确定OA和OB的长,进而确定B为OA的中点,而D为OC的中点,利用中位线定理即可证明;(2)作BF⊥AC于点F,取AB的中点G,确定出G坐标;由平行线间的距离相等求出BF的长,在直角三角形ABF中,利用斜边上的中线等于斜边的一半求出FG的长,进而确定出三角形BFG为等边三角形,即∠BAC=30°,设OC=x,则有AC=2x,利用勾股定理求出OA的长,即可确定C的坐标;(3)当四边形ABDE为平行四边形,可得AB∥DE,进而得到DE垂直于OC,再由D为OC中点,得到OE=CE;再由OE垂直于AC,得到三角形AOC为等腰直角三角形,求出OC的长,确定出C坐标;设直线AC解析式为y=kx+b,利用待定系数法即可确定的解析式.【详解】解:(1),,,,是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论