2024年浙江省宁波市鄞州区实验中学八年级数学第二学期期末学业水平测试试题含解析_第1页
2024年浙江省宁波市鄞州区实验中学八年级数学第二学期期末学业水平测试试题含解析_第2页
2024年浙江省宁波市鄞州区实验中学八年级数学第二学期期末学业水平测试试题含解析_第3页
2024年浙江省宁波市鄞州区实验中学八年级数学第二学期期末学业水平测试试题含解析_第4页
2024年浙江省宁波市鄞州区实验中学八年级数学第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年浙江省宁波市鄞州区实验中学八年级数学第二学期期末学业水平测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.平行四边形一边长12,那么它的两条对角线的长度可能是()A.8和16 B.10和16 C.8和14 D.8和122.小华的爷爷每天坚持体育锻炼,某天他慢跑从家到中山公园,打了一会儿太极拳后坐公交车回家.下面能反映当天小华的爷爷离家的距离y与时间x的函数关系的大致图像是().A. B. C. D.3.如图,在菱形ABCD中,∠A=60°,E,F分别是AB,AD的中点,DE,BF相交于点G,连接BD,CG,有下列结论:①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④.其中正确的结论有()A.1个 B.2个 C.3个 D.4个4.如图,△ABC是等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积是△ABC的面积的A. B. C. D.5.已知等腰三角形的两边长是5cm和10cm,则它的周长是()A.21cmB.25cmC.20cmD.20cm或25cm6.如图,△ABC中,∠BAC=90°,AD⊥BC于D,若AB=2,BC=4,则CD的长是()A.1 B.4 C.3 D.27.2019年6月7日是端午节,某幼儿园对全体小朋友爱吃哪种粽子做调查,以决定最终买哪种口味的粽子.下面的调查数据最值得关注的是()A.众数 B.中位数 C.平均数 D.方差8.函数y=x+1中自变量x的取值范围是()A.x≥﹣1

B.x≤﹣1

C.x>﹣1

D.x<﹣19.如图,菱形ABCD的对角线AC,BD相交于点O,E,F分别是AB,BC边上的中点,连接EF.若,BD=4,则菱形ABCD的周长为()A.4 B. C. D.2810.如图,AB=AC,BE⊥AC于点E,CF⊥AB于点F,BE,CF交于点D,则下列结论中不正确的是()A.△ABE≌△ACF B.点D在∠BAC的平分线上C.△BDF≌△CDE D.D是BE的中点11.在□ABCD中,点P在对角线AC上,过P作EF∥AB,HG∥AD,记四边形BFPH的面积为S1,四边形DEPG的面积为S2,则S1与S2的大小关系是(

)A.S1>S2 B.S1=S2 C.S1<S2 D.无法判断12.一次函数的图像与y轴交点的坐标是()A.(0,-4) B.(0,4) C.(2,0) D.(-2,0)二、填空题(每题4分,共24分)13.如图,每个小正方形边长为1,A、B、C是小正方形的顶点,则AB2=_____,∠ABC=_____°.14.如图,在RtACB中,∠C=90°,AB=2,以点B为圆心,适当长为半径画弧,分别交边AB,BC于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧相交于点P,作射线BP交AC于点D,若CD=1,则ABD的面积为_____.15.要使四边形ABCD是平行四边形,已知∠A=∠C=120°,则还需补充一个条件是_____.16.往如图所示的地板中随意抛一颗石子(石子看作一个点),石子落在阴影区域的概率为___________17.如图,在ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=52°,则∠B的度数是________.18.一个多边形的内角和与外角和的比是4:1,则它的边数是.三、解答题(共78分)19.(8分)在平面直角坐标系xOy中,点P和图形W的“中点形”的定义如下:对于图形W上的任意一点Q,连结PQ,取PQ的中点,由所以这些中点所组成的图形,叫做点P和图形W的“中点形”.已知C(-2,2),D(1,2),E(1,0),F(-2,0).(1)若点O和线段CD的“中点形”为图形G,则在点,,中,在图形G上的点是;(2)已知点A(2,0),请通过画图说明点A和四边形CDEF的“中点形”是否为四边形?若是,写出四边形各顶点的坐标,若不是,说明理由;(3)点B为直线y=2x上一点,记点B和四边形CDEF的中点形为图形M,若图形M与四边形CDEF有公共点,直接写出点B的横坐标b的取值范围.20.(8分)列方程解应用题:某地2016年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1600万元.从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?21.(8分)已知一次函数y=kx+1经过点(1,2),O为坐标轴原点.(1)求k的值.(2)点P是x轴上一点,且满足∠APO=45°,直接写出P点坐标.22.(10分)如图,已知直线y=x+2交x轴于点A,交y轴于点B,(1)求A,B两点的坐标;(2)已知点C是线段AB上的一点,当S△AOC=S△AOB时,求直线OC的解析式。23.(10分)如图所示,在正方形中,是上一点,是延长线上一点,且,连接,.(1)求证:;(2)若点在上,且,连接,求证:.24.(10分)如图,在平面直角坐标系中,函数的图象经过点和点.过点作轴,垂足为点,过点作轴,垂足为点,连结、、、.点的横坐标为.(1)求的值.(2)若的面积为.①求点的坐标.②在平面内存在点,使得以点、、、为顶点的四边形是平行四边形,直接写出符合条件的所有点的坐标.25.(12分)按要求解不等式(组)(1)求不等式的非负整数解.(2)解不等式组,并把它的解集在数轴上表示出来.26.如图,正方形的对角线、相交于点,,.(1)求证:四边形是正方形.(2)若,则点到边的距离为______.

参考答案一、选择题(每题4分,共48分)1、B【解析】

根据平行四边形的对角线互相平分,利用三角形的任意两边之和大于第三边对各选项分析判断后利用排除法求解.【详解】A、两对角线的一半分别为4、8,∵4+8=12,∴不能组成三角形,故本选项错误;B、两对角线的一半分别为5、8,∵5+8>12,∴能组成三角形,故本选项正确;C、两对角线的一半分别为4、7,∵4+7=11<12,∴不能组成三角形,故本选项错误;D、两对角线的一半分别为4、6,∵4+6=10<12,∴不能组成三角形,故本选项错误,故选B.【点睛】本题考查了平行四边形的对角线互相平分的性质,三角形的三边关系,利用两对角线的一半与边长能否构成三角形判定是解题的关键.2、C【解析】

根据在每段中,离家的距离随时间的变化情况即可进行判断.【详解】图象应分三个阶段,第一阶段:慢步到离家较远的绿岛公园,在这个阶段,离家的距离随时间的增大而增大;第二阶段:打了一会儿太极拳,这一阶段离家的距离不随时间的变化而改变。故D错误;第三阶段:搭公交车回家,这一阶段,离家的距离随时间的增大而减小,故A错误,并且这段的速度大于第一阶段的速度,则B错误.

故选:C.【点睛】本题考查函数图象,解题的关键是由题意将图象分为三个阶段进行求解.3、C【解析】试题解析:①由菱形的性质可得△ABD、BDC是等边三角形,∠DGB=∠GBE+∠GEB=30°+90°=120°,故①正确;②∵∠DCG=∠BCG=30°,DE⊥AB,∴可得DG=CG(30°角所对直角边等于斜边一半)、BG=CG,故可得出BG+DG=CG,即②也正确;③首先可得对应边BG≠FD,因为BG=DG,DG>FD,故可得△BDF不全等△CGB,即③错误;④S△ABD=AB•DE=AB•BE=AB•AB=AB2,即④正确.综上可得①②④正确,共3个.故选C.4、C【解析】

解:∵AB被截成三等分,∴△AEH∽△AFG∽△ABC,∴,∴S△AFG:S△ABC=4:9S△AEH:S△ABC=1:9∴S阴影部分的面积=S△ABC﹣S△ABC=S△ABC故选C.5、B【解析】试题分析:当腰为5cm时,5+5=10,不能构成三角形,因此这种情况不成立.

当腰为10cm时,10-5<10<10+5,能构成三角形;

此时等腰三角形的周长为10+10+5=25cm.

故选B.6、C【解析】试题分析:先由∠BAC=90°,AD⊥BC,∠B=∠B证得△ABD∽△CBA,再根据相似三角形的性质求得BD的长,即可求得结果.解:∵∠BAC=90°,AD⊥BC,∠B=∠B∴△ABD∽△CBA∴∵AB=2,BC=4∴,解得∴CD=BC-BD=3故选C.考点:相似三角形的判定和性质点评:相似三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.7、A【解析】

幼儿园最值得关注的应该是哪种粽子爱吃的人数最多,即众数.【详解】解:由于众数是数据中出现次数最多的数,故幼儿园最值得关注的应该是统计调查数据的众数.故选A.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.8、A【解析】

根据被开方数大于等于0列式计算即可得解.【详解】解:由题意得,x+1⩾0,解得x⩾-1.故选:A.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.9、C【解析】

首先利用三角形的中位线定理得出AC,进一步利用菱形的性质和勾股定理求得边长,得出周长即可.【详解】解:∵E,F分别是AB,BC边上的中点,EF=,∴AC=2EF=2,∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=,OB=BD=2,∴AB==,∴菱形ABCD的周长为4.故选C.10、D【解析】

根据全等三角形的判定对各个选项进行分析,从而得到答案.做题时,要结合已知条件与三角形全等的判定方法逐个验证.【详解】∵AB=AC,BE⊥AC于E,CF⊥AB于F,∠A=∠A∴△ABE≌△ACF(AAS),正确;∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴DF=DE故点D在∠BAC的平分线上,正确;∵△ABE≌△ACF,AB=AC∴BF=CE,∠B=∠C,∠DFB=∠DEC=90°∴△BDF≌△CDE(AAS),正确;D.无法判定,错误;故选D.11、B【解析】【分析】先证四边形ABPE和四边形PFCG都是平行四边形,再利用平行四边形对角线平分四边形面积即可.【详解】因为,在□ABCD中,点P在对角线AC上,过P作EF∥AB,HG∥AD,所以,四边形边形ABPE和四边形PFCG都是平行四边形,所以,S△ABC=S△CDA,S△AEP=S△PHA,S△PFC=S△CGP,所以,S△ABC-S△AEP-S△PFC=S△CDA-S△PHA-S△CGP,所以,S△BFPH=S△DEPG,即:S1=S2故选:B【点睛】本题考核知识点:平行四边形性质.解题关键点:平行四边形对角线平分四边形面积.12、B【解析】

根据点在直线上点的坐标满足方程的关系,在解析式中令x=0,即可求得与y轴的交点的纵坐标,由此即可得答案.【详解】令x=0,得y=2×0+4=4,则函数与y轴的交点坐标是(0,4).故选B.二、填空题(每题4分,共24分)13、101.【解析】

连接AC,根据勾股定理得到AB2,BC2,AC2的长度,证明△ABC是等腰直角三角形,继而可得出∠ABC的度数.【详解】连接AC.根据勾股定理可以得到:AB2=12+32=10,AC2=BC2=12+22=5,∵5+5=10,即AC2+BC2=AB2,∴△ABC是等腰直角三角形,∴∠ABC=1°.故答案为:10,1.【点睛】考查了勾股定理及其逆定理,判断△ABC是等腰直角三角形是解决本题的关键.14、【解析】

过点D作DH⊥AB于H.利用角平分线的性质定理求出DH,然后根据三角形的面积公式即可解决问题.【详解】解:如图,过点D作DH⊥AB于H.∵DC⊥BC,DH⊥AB,BD平分∠ABC,∴DH=CD=1,∴S△ABD=•AB•DH=×2×1=,故答案为:.【点睛】本题主要考查角平分线的尺规作图及性质,掌握角平分线的性质是解题的关键.15、∠B=∠D=60°【解析】

由条件∠A=∠C=120°,再加上条件∠B=∠D=60°,可以根据两组对边分别平行的四边形是平行四边形得到四边形ABCD是平行四边形.【详解】解:添加条件∠B=∠D=60°,∵∠A=∠C=120°,∠B=∠D=60°,∴∠A+∠B=180°,∠C+∠D=180°∴AD∥CB,AB∥CD,∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).故答案是:∠B=∠D=60°.【点睛】考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③一组对边平行且相等的四边形是平行四边形;④两组对角分别相等的四边形是平行四边形;⑤对角线互相平分的四边形是平行四边形.16、【解析】

求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.【详解】设最小正方形的边长为1,则小正方形边长为2,阴影部分面积=2×2×4+1×1×2=18,白色部分面积=2×2×4+1×1×2=18,故石子落在阴影区域的概率为.故答案为:.【点睛】本题考查了概率,正确运用概率公式是解题的关键.17、76º【解析】

过F作AB、CD的平行线FG,由于F是AD的中点,那么G是BC的中点,即Rt△BCE斜边上的中点,由此可得BC=2EG=2FG,即△GEF、△BEG都是等腰三角形,因此求∠B的度数,只需求得∠BEG的度数即可;易知四边形ABGF是平行四边形,得∠EFG=∠AEF,由此可求得∠FEG的度数,即可得到∠AEG的度数,根据邻补角的定义可得∠BEG的值,由此得解.【详解】过F作FG∥AB∥CD,交BC于G;则四边形ABGF是平行四边形,所以AF=BG,即G是BC的中点;∵BC=2AB,F为AD的中点,∴BG=AB=FG=AF,连接EG,在Rt△BEC中,EG是斜边上的中线,

则BG=GE=FG=BC;

∵AE∥FG,

∴∠EFG=∠AEF=∠FEG=52°,

∴∠AEG=∠AEF+∠FEG=104°,

∴∠B=∠BEG=180°-104°=76°.【点睛】考查了平行四边形的性质、直角三角形的性质以及等腰三角形的判定和性质,正确地构造出与所求相关的等腰三角形是解决问题的关键.18、1.【解析】

多边形的外角和是360度,内角和与外角和的比是4:1,则内角和是1440度.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】解:根据题意,得(n﹣2)•180=4360,解得:n=1.则此多边形的边数是1.故答案为1.三、解答题(共78分)19、(1),;(1)点A和四边形CDEF的“中点形”是四边形,各顶点的坐标为:(0,0)、(0,1)、(,0)、(,1);(3)-1≤b≤0或1≤b≤1.【解析】

(1)依照题意画出图形,观察图形可知点O和线段CD的中间点所组成的图形是线段C′D′,根据点A,C,D的坐标,利用中点坐标公式可求出点C′,D′的坐标,进而可得出结论;

(1)画出图形,观察图形可得出结论;(3)利用一次函数图象上点的坐标特征可得出点B的坐标为(n,1n),依照题意画出图形,观察图形可知:点B和四边形CDEF的中间点只能在边EF和DE上,当点B和四边形CDEF的中间点在边EF上时,利用四边形CDEF的纵坐标的范围,可得出关于n的一元一次不等式组,解之即可得出n的取值范围;当点B和四边形CDEF的中间点在边DE上时,由四边形CDEF的横、纵坐标的范围,可得出关于n的一元一次不等式组,解之即可得出n的取值范围.综上,此题得解.【详解】解:(1)如图:点O和线段CD的中间点所组成的图形G是线段C′D′,由题意可知:点C′为线段OC的中点,点D′为线段OD的中点.

∵点C的坐标为(-1,1),点D的坐标为(1,1),

∴点C′的坐标为(-1,1),点D′的坐标为(,1),∴点O和线段CD的中间点所组成的图形G即线段C′D′的纵坐标是1,横坐标-1≤x≤,∴点,,中,在图形G上的点是,;(1)点A和四边形CDEF的“中点形”是四边形.各顶点的坐标为:(0,0)、(0,1)、(,0)、(,1).(3)∵点B的横坐标为b,

∴点B的坐标为(b,1b).

当点B和四边形CDEF的中间点在边EF上时,有,

解得:-1≤b≤0;

当点B和四边形CDEF的中间点在边DE上时,有,

解得:1≤b≤1,

综上所述:点B的横坐标b的取值范围为-1≤b≤0或1≤b≤1.故答案为(1),;(1)点A和四边形CDEF的“中点形”是四边形,各顶点的坐标为:(0,0)、(0,1)、(,0)、(,1);(3)-1≤b≤0或1≤b≤1.【点睛】本题考查中点坐标公式、一次函数图象上点的坐标特征以及解一元一次不等式组,解题的关键是:(1)通过画图找出点O和线段CD的中间点所组成的图形是线段C′D′;(1)画出图形,观察图形;(3)分点B和四边形CDEF的中间点在边EF上及点B和四边形CDEF的中间点在边DE上两种情况,找出关于b的一元一次不等式组.20、从2015年到2017年,该地投入异地安置资金的年平均增长率为50%.【解析】

设年平均增长率为x,根据:2016年投入资金×(1+增长率)2=2018年投入资金,列出方程求解可得.【详解】解:设该地投入异地安置资金的年平均增长率为x.根据题意得:1280(1+x)2=1280+1600.解得x1=0.5=50%,x2=-2.5(舍去),答:从2016年到2018年,该地投入异地安置资金的年平均增长率为50%.【点睛】本题考查了一元二次方程的应用,由题意准确找出相等关系并据此列出方程是解题的关键.21、(1)1(2)P(3,0)或P(−1,0).【解析】

(1)直接把点A(1,2)代入一次函数y=kx+1,求出k的值即可;(2)求出直线y=x+1与x轴的交点,进而可得出结论.【详解】(1)∵一次函数y=kx+1经过A(1,2),∴2=k+1,∴k=1;(2)如图所示,∵k=1,∴一次函数的解析式为y=x+1,∴B(0,1),C(−1,0),∴∠ACO=45°,∴P(−1,0);∴P关于直线x=1与P对称,∴P(3,0).∴P(3,0)或P(−1,0).【点睛】此题考查一次函数图象上点的坐标特征,解题关键在于作辅助线22、(1)点A的坐标为(-4,0),点B的坐标为(0,2);(2)y=-x【解析】

(1)分别令y=0,x=0,代入一次函数式,即可求出A、B点的坐标;(2)先由OA和OB的长求出△AOB的面积,设C点坐标为(m,n),△AOC和△AOB等底不同高,由S△AOC=

S△AOB

列式,求出C点的纵坐标n,把n代入一次函数式求出m,从而得出C点坐标,设直线OC的解析式为y=kx

,根据C点坐标用待定系数法求出k,即可确定直线OC的函数解析式.【详解】(1)解:∵直线y=x+2,∴当x=0时,y=2,当y=0时,x=-4∵直线y=x+2交x轴于点A,交y轴于点B,∴点A的坐标为(-4,0),点B的坐标为(0,2)(2)解:由(1)知,点A的坐标为(-4,0),点B的坐标为(0,2),∴OA=4,OB=2,∴S△AOB==4S△AOC=S△AOB,∴S△AOC=2设点C的坐标为(m,n)∴=2,得n=1,∵点C在线段AB上,∴1=m+2,得m=-2∴点C的坐标为(-2,1)设直线OC的解析式为y=kx-2k=1,得k=-,即直线OC的函数解析式为y=-x【点睛】此题主要考查一次函数的应用,解题的关键是熟知一次函数的图像与性质及三角形的面积公式.23、(1)详见解析;(2)详见解析.【解析】

(1)由正方形的性质得到,,求得,根据全等三角形的判定和性质定理即可得到结论;(2)根据全等三角形的性质得到,根据线段的和差即可得到结论.【详解】证明(1)在正方形中,∵,又∵∴∴(2)∵∴又∵∴在和△中∵又由(1)知∴∴又∵∴【点睛】本题考查了正方形的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.24、(1)4;(2)①点的坐标为.②、、【解析】

(1)利用待定系数法将A点代入,即可求函数解析式的k值;(2)用三角形ABD的面积为4,列方程,即可求出a的值,可得点的坐标;(3)E的位置分三种情况分析,由平行四边形对边平行的关系,用平移规律求对应点的坐标.【详解】(1)函数的图象经过点,(2)①如图,设AC与BD交与M,点的横坐标为,点在的图象上,点的坐标为.∵轴,轴,,.∵的面积为,...点的坐标为.②∵C(1,0)∴AC=4当以ACZ作为平行四边形的边时,BE=AC=4∴∴∴、当AC作为平行四边形的对角线时,A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论