版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省杭州市富阳区城区联考数学八年级下册期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.用配方法解方程x2﹣4x﹣2=0变形后为()A.(x﹣4)2=6B.(x﹣2)2=6C.(x﹣2)2=2D.(x+2)2=62.一次函数y=kx+b(k,b是常数,k≠0)的图象如图所示,则不等式kx+b>0的解集为()A.x>-3 B.x>0 C.x<-2 D.x<03.在四边形中,对角线,相交于点,,,添加下列条件,不能判定四边形是菱形的是().A. B. C. D.4.在下列式子中,x可以取1和2的是()A. B. C. D.5.已知样本数据1,2,4,3,5,下列说法不正确的是()A.平均数是3 B.中位数是4C.极差是4 D.方差是26.下列式子中,属于最简二次根式的是:A. B. C. D.7.如图,AC、BD是四边形ABCD的对角线,若E、F、G、H分别是BD、BC、AC、AD的中点,顺次连接E、F、G、H四点,得到四边形EFGH,则下列结论不正确的是()A.四边形EFGH一定是平行四边形 B.当AB=CD时,四边形EFGH是菱形C.当AC⊥BD时,四边形EFGH是矩形 D.四边形EFGH可能是正方形8.若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为(
)A.(﹣1,0) B.(﹣1,﹣1) C.(﹣2,0) D.(﹣2,﹣1)9.当1<a<2时,代数式+|1-a|的值是()A.-1 B.1 C.2a-3 D.3-2a10.已知直角三角形中30°角所对的直角边为2cm,则斜边的长为()A.2cm B.4cm C.6cm D.8cm11.如图,在中,,,垂直平分斜边,交于,是垂足,连接,若,则的长是()A. B.4 C. D.612.下列事件中是必然事件的是()A.投掷一枚质地均匀的硬币100次,正面朝上的次数为50次B.一组对边平行,另一组对边相等的四边形是等腰梯形C.如果,那么D.13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月二、填空题(每题4分,共24分)13.已知一个菱形的两条对角线的长分别为10和24,则这个菱形的周长为.14.已知Rt△ABC中,AB=3,AC=4,则BC的长为__________.15.需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,−2,+1,0,+2,−3,0,+1,则这组数据的方差是________.16.已知,化简:__________.17.点P在第四象限内,P到轴的距离是3,到轴的距离是5,那么点P的坐标为.18.如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是__________.三、解答题(共78分)19.(8分)如图,AE∥BF,AC平分∠BAE,交BF于点C,BD平分∠ABC,交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若AB=5,AC=6,求AE,BF之间的距离.20.(8分)某八年级计划用360元购买笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,结果买得的笔记本比打折前多10本。(1)请求出每本笔记本的原来标价;(2)恰逢文具店周年志庆,每本笔记本可以按原价打8折,这样该校最多可购入多少本笔记本?21.(8分)如图,直线y=-x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),P(x,y)是直线y=-x+10在第一象限内的一个动点.(1)求△OPA的面积S与x的函数解析式,并写出自变量x的取值范围;(2)过点P作PE⊥x轴于点E,作PF⊥y轴于点F,连接EF,是否存在一点P使得EF的长最小,若存在,求出EF的最小值;若不存在,请说明理由.22.(10分)如图,矩形的两边,的长分别为3,8,且点,均在轴的负半轴上,是的中点,反比例函数的图象经过点,与交于点.(1)若点坐标为,求的值;(2)若,且点的横坐标为,则点的横坐标为______(用含的代数式表示),点的纵坐标为______,反比例函数的表达式为______.23.(10分)某校为了了解学生的安全意识,在全校范围内随机抽取部分学生进行问卷调查.根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图,如图所示:根据以上信息,解答下列问题:(1)这次调查一共抽取了______名学生,将条形统计图补充完整;(2)扇形统计图中,“较强”层次所占圆心角的大小为______°;(3)若该校有3200名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,请你估计全校需要强化安全教育的学生人数.24.(10分)先化简,再求值:其中a=1.25.(12分)在一次数学实践活动中,观测小组对某品牌节能饮水机进行了观察和记录,当观察到第分钟时,水温为,记录的相关数据如下表所示:第一次加热、降温过程…t(分钟)0102030405060708090100…y()204060801008066.757.15044.440…(饮水机功能说明:水温加热到时饮水机停止加热,水温开始下降,当降到时饮水机又自动开始加热)请根据上述信息解决下列问题:(1)根据表中数据在如图给出的坐标系中,描出相应的点;(2)选择适当的函数,分别求出第一次加热过程和第一次降温过程关于的函数关系式,并写出相应自变量的取值范围;(3)已知沏茶的最佳水温是,若18:00开启饮水机(初始水温)到当晚20:10,沏茶的最佳水温时间共有多少分钟?26.如图,正方形中,点、、分别是、、的中点,、交于,连接、.下列结论:①;②;③;④.正确的有()A.1个 B.2个 C.3个 D.4个
参考答案一、选择题(每题4分,共48分)1、B【解析】
在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数-4的一半的平方.【详解】把方程x2-4x-2=0的常数项移到等号的右边,得到x2-4x=2方程两边同时加上一次项系数一半的平方,得到x2-4x+4=2+4配方得(x-2)2=1.故选B.【点睛】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.2、A【解析】
由图象可知kx+b=0的解为x=−1,所以kx+b>0的解集也可观察出来.【详解】从图象得知一次函数y=kx+b(k,b是常数,k≠0)的图象经过点(−1,0),并且函数值y随x的增大而增大,因而则不等式kx+b>0的解集是x>−1.故选:A.【点睛】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.3、B【解析】
由,,证出四边形是平行四边形,A.,根据邻边相等的平行四边形,可证四边形是菱形;B.,对角线相等的平行四边形是矩形,不能证四边形是菱形;C.,根据对角线互相垂直的平行四边形是菱形,可证四边形是菱形;D.,证,根据等角对等边可证,即可证得四边形是菱形.【详解】,,四边形是平行四边形,A.,是菱形;B.,是矩形,不是菱形;C.,是菱形;D.,是菱形;故本题的答案是:B【点睛】本题考查了特殊四边形菱形的证明,平行四边形的证明,矩形的证明,注意对这些证明的理解,容易混淆,小心区别对比.4、B【解析】
根据分式和二次根式有意义的条件即可求出答.【详解】解:A.x﹣1≠0,所以x≠1,故A不可以取1B.x﹣1≥0,所以x≥1,故B可以取1和2C.x﹣2≥0,所以x≥2,故C不可以取1D.x﹣2≠0,所以x≠2,故D不可以取2故选:B.【点睛】本题考查的是分式和二次根式有意义的条件,熟练掌握二者是解题的关键.5、B【解析】试题分析:A、这组数据的平均数是:(1+2+4+3+5)÷5=3,故本选项正确;B、把这组数据从小到大排列:1,2,3,4,5,则中位数是3,故本选项错误;C、这组数据的极差是:5-1=4,故本选项正确;D、这组数据的方差是2,故本选项正确;故选B.考点:方差;算术平均数;中位数;极差.6、A【解析】
根据最简二次根式的定义对各选项进行判断.【详解】解:=3,=2,=而为最简二次根式.
故选:A.【点睛】本题考查最简二次根式:熟练掌握最简二次根式满足的条件(被开方数的因数是整数或字母,因式是整式;被开方数中不含有可化为平方数或平方式的因数或因式).7、C【解析】
根据三角形中位线定理、平行四边形、矩形、菱形、正方形的判定定理判断即可.【详解】解:∵E、F分别是BD、BC的中点,∴EF∥CD,EF=CD,∵H、G分别是AD、AC的中点,∴HG∥CD,HG=CD,∴HG∥EF,HG=EF,∴四边形EFGH是平行四边形,A说法正确,不符合题意;∵F、G分别是BC、AC的中点,∴FG=AB,∵AB=CD,∴FG=EF,∴当AB=CD时,四边形EFGH是菱形,B说法正确,不符合题意;当AB⊥BC时,EH⊥EF,∴四边形EFGH是矩形,C说法错误,符合题意;当AB=CD,AB⊥BC时,四边形EFGH是正方形,说法正确,不符合题意;故选:C.【点睛】此题考查中点四边形、三角形中位线定理,掌握平行四边形、矩形、菱形、正方形的判定定理是解题的关键.8、B【解析】
已知点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,根据向左平移横坐标减,向下平移纵坐标减的平移规律可得,点B的横坐标为1﹣2=﹣1,纵坐标为3﹣4=﹣1,所以B的坐标为(﹣1,﹣1).故答案选C.考点:坐标与图形变化﹣平移.9、B【解析】
解:∵1<a<2,∴=|a-2|=-(a-2),|1-a|=a-1,∴+|1-a|=-(a-2)+(a-1)=2-1=1.故选B.10、B【解析】
试题分析:由题意可知,在直角三角形中,30°角所对的直角边等于斜边的一般,所以斜边=2×2=4cm.考点:含30°的直角三角形的性质.11、D【解析】
由垂直平分线的性质可得,,在中可求出的长,则可得到的长.【详解】垂直平分斜边,,,,,.故选:.【点睛】本题主要考查垂直平分线的性质以及含角的直角三角形的性质,由条件得到是解题的关键.12、D【解析】
根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、投掷一枚质地均匀的硬币100次,正面朝上的次数为50次是随机事件;B、一组对边平行,另一组对边相等的四边形是等腰梯形是随机事件;C、如果a2=b2,那么a=b是随机事件;D、13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月是必然事件;故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题(每题4分,共24分)13、52【解析】解:已知AC=10cm,BD=24cm,菱形对角线互相垂直平分,∴AO=5,BO=12cm,∴AB==13cm,∴BC=CD=AD=AB=13cm,∴菱形的周长为4×13=52cm14、或1.【解析】
根据勾股定理来进行解答即可,本题需要分两种情况进行计算,即BC为斜边和BC为直角边.【详解】根据勾股定理可得:AB=或AB=,故答案为1或.【点睛】本题主要考查的是利用勾股定理求边长的问题,属于基础问题.在利用勾股定理时一定要注意所求的边为直角边还是斜边.15、2.1【解析】
解:平均数=(1-2+1+0+2-3+0+1)÷8=0;方差==2.1,故答案为2.1.考点:方差;正数和负数.16、1【解析】
直接利用二次根式的性质化简得出答案.【详解】解:∵0<a<1,∴,故答案为:1.【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.17、(5,-1).【解析】试题分析:已知点P在第四象限,可得点P的横、纵坐标分别为正数、负数,又因为点P到x轴的距离为1,到y轴的距离为5,所以点P的横坐标为5或-5,纵坐标为1或-1.所以点P的坐标为(5,-1).考点:各象限内点的坐标的特征.18、【解析】
根据题意可得阴影部分的面积等于△ABC的面积,因为△ABC的面积是菱形面积的一半,根据已知可求得菱形的面积则不难求得阴影部分的面积.【详解】设AP,EF交于O点,∵四边形ABCD为菱形,∴BC∥AD,AB∥CD.∵PE∥BC,PF∥CD,∴PE∥AF,PF∥AE.∴四边形AEFP是平行四边形.∴S△POF=S△AOE.即阴影部分的面积等于△ABC的面积.∵△ABC的面积等于菱形ABCD的面积的一半,菱形ABCD的面积=ACBD=5,∴图中阴影部分的面积为5÷2=.三、解答题(共78分)19、(1)证明见解析;(2).【解析】试题分析:(1)根据平行线的性质得出∠ADB=∠DBC,∠DAC=∠BCA,根据角平分线定义得出∠DAC=∠BAC,∠ABD=∠DBC,求出∠BAC=∠ACB,∠ABD=∠ADB,根据等腰三角形的判定得出AB=BC=AD,根据平行四边形的判定得出四边形ABCD是平行四边形,即可得出答案;(2)先求出BD的长,求出菱形的面积,即可求出答案.试题解析:(1)∵AE∥BF,∴∠ADB=∠DBC,∠DAC=∠BCA,∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∴∠BAC=∠ACB,∠ABD=∠ADB,∴AB=BC,AB=AD∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD是菱形;(2)过A作AM⊥BC于M,则AM的长是AE,BF之间的距离,∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=AC=×6=3,∵AB=5,∴在Rt△AOB中,由勾股定理得:BO=4,∴BD=2BO=8,∴菱形ABCD的面积为×AC×BD=×6×8=24,∵四边形ABCD是菱形,∴BC=AB=5,∴5×AM=24,∴AM=,即AE,BF之间的距离是.考点:1.菱形的判定和性质,2.平行四边形的判定,3.平行线的性质,4.等腰三角形的判定20、(1)4元;(2)112本.【解析】
(1)根据打折后购买的数量比打折前多10本,进而列出方程求出答案;(2)先求出打8折后的标价,再根据数量=总价÷单价,列式计算即可求解.【详解】解:(1)设笔记本打折前售价为元,则打折后售价为元,由题意得:,解得:,经检验,是原方程的根.答:打折前每本笔记本的售价是4元;(2)购入笔记本的数量为:(元).故该校最多可购入112本笔记本.【点睛】此题主要考查了分式方程的应用,正确得出等量关系是解题关键.21、(1)S=40-4x(0<x<10);(2)存在点P使得EF的长最小,最小值为5【解析】试题分析:(1)利用三角形面积公式,得到S△OPA面积,得到S和x的关系.(2)四边形OEPF为矩形,OP垂直于BC时,OP最小,EF也最小.试题解析:解:(1)S△OPA=OA·y=×8×(-x+10)=40-4x.∴S=40-4x(0<x<10).(2)存在点P使得EF的长最小,∵四边形OEPF为矩形,∴EF=OP,∴OP⊥BC时,OP最小,即EF最小.∵B(10,0),C(0,0),∴OB=OC=10,BC=10..∴OP==5..∴EF的最小值为5.22、(1);(2),1,.【解析】
(1)根据矩形的性质,可得A,E的坐标,根据待定系数法即可求解;(2)根据勾股定理,可得AE的长,根据线段的和差,可得FB,可得F的占比,根据待定系数法,可得m的值,即可求解.【详解】解:(1)∵四边形是矩形,∴,即轴,,,∵是的中点,∴,∵点坐标为,∴,∴,∴点的坐标为.把点代入反比例函数得,,∴.(2)如图,连接AE,∵点E的横坐标为a,BC=3∴点F的横坐标为a-3,又∵在Rt△ADE中,AE=∴AF=AE+2=7,BF=8-7=1∴点F的纵坐标为1,∴E(a,4),F(a-3,1)∵反比例函数经过E,F∴4a=1(a-3)解得a=-1,∴E(-1,4)∴k=-4,故反比例函数的解析式为【点睛】此题主要考查反比例函数与几何综合,解题的关键是熟知勾股定理、反比例函数的图像与性质.23、(1)200,t图见解析;(2)108;(3)估计全校需要强化安全教育的学生人数为800人【解析】
(1)用条形统计图中“一般”层次的人数除以扇形统计图中“一般”层次所占百分比即可求出抽取的人数,然后用总人数减去其它三个层次的人数即得“较强”层次的人数,进而可补全条形统计图;(2)用“较强”层次的人数除以总人数再乘以360°即可求出结果;(3)用3200乘以样本中“淡薄”和“一般”层次所占的百分比即可.【详解】解:(1)30÷15%=200,所以这次调查一共抽取了200名学生;较强层次的人数为200-20-30-90=60(人),条形统计图补充为:故答案为:200;(2)扇形统计图中,“较强”层次所占圆心角=360°×=108°;故答案为:108;(3)3200×=800,所以估计全校需要强化安全教育的学生人数为800人.【点睛】本题考查了条形统计图和扇形统计图以及利用样本估计总体的思想,属于常考题型,正确理解题意、读懂统计图提供的信息、弄清二者的联系是解题的关键.24、,【解析】
先利用平方差公式化简,可得原式,再代入求解即可.【详解】解:原式.当时,原式.【点睛】本题考查了分式的化简求值问题,掌握平方差公式、分式的运算法则是解题的关键.25、(1)见解析;(2)第一次加热:,;第一次降温:,;(3)分钟.【解析】
(1)利用描点法画出图形即可;(2)利用待定系数法即可解决问题;(3)首先判断出而18:00至1:10共130分钟,饮水机加热一次,降温一次,再加热了一次的过程,分别求出加热过程中,降温过程中的最佳水温时间即可解决问题;【详解】解:(1)如图所示:(2)观察图象可知第一次加热过程的函数关系是一次函数,设解析式为y=kt+b,则有,解得:,∴第一次加热过程的函数关系是y=2x+1.(0≤t≤40)由图象可知第一次降温过程的函数关系是反比例函数,设y=,把(50,80)代入得到m=4000,∴第一次降温过程的函数关系是y=(40≤t≤100).(3)由题意可知,第二次加热观察时间为30分钟,结束加热是第130分钟,而18:00至1:10共130分钟,∴饮水机加热一次,降温一次,再加热了一次,把y=80代入y=2t+1,得到t=30,把y=90代入y=2x+1,得到t=35,∴一次加热过程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度车辆绿色出行补贴购买合同
- 二零二五年度经典实习合同(法律事务实习)
- 2025年度证券公司内部控制体系建设及风险管理体系优化委托合同
- 二零二五年度金融机构与个人客户协议存款业务合同
- 二零二五年度版水库鱼塘承包与渔业养殖技术培训合同
- 2025年度项目管理顾问聘用合同书
- 二零二五年度演出活动艺人合同解除及免责合同
- 2025年度私人车位租赁与车位租赁期限调整合同
- 2025年度解聘劳动合同补偿标准与员工终身学习支持合同
- 2025年度文化创意园区车位使用权共享与开发合同
- 机电安装工程安全培训
- 洗浴部前台收银员岗位职责
- 2024年辅警考试公基常识300题(附解析)
- GB/T 43650-2024野生动物及其制品DNA物种鉴定技术规程
- 暴发性心肌炎查房
- 工程质保金返还审批单
- 【可行性报告】2023年电动自行车项目可行性研究分析报告
- 五月天歌词全集
- 商品退换货申请表模板
- 实习单位鉴定表(模板)
- 数字媒体应用技术专业调研方案
评论
0/150
提交评论