2024届湖南省岳阳县联考八年级数学第二学期期末复习检测模拟试题含解析_第1页
2024届湖南省岳阳县联考八年级数学第二学期期末复习检测模拟试题含解析_第2页
2024届湖南省岳阳县联考八年级数学第二学期期末复习检测模拟试题含解析_第3页
2024届湖南省岳阳县联考八年级数学第二学期期末复习检测模拟试题含解析_第4页
2024届湖南省岳阳县联考八年级数学第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖南省岳阳县联考八年级数学第二学期期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列四个不等式组中,解集在数轴上表示如图所示的是()A. B. C. D.2.已知x=+1,y=﹣1,则x2+xy+y2的值为()A.4 B.6 C.8 D.103.如图,在平行四边形中,∠A=40°,则∠B的度数为()A.100° B.120° C.140° D.160°4.直线y=2x﹣7不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.三角形两边长分别为2和4,第三边是方程x2-6x+8=0的解,则这个三角形的周长是().A.8 B.8或10 C.10 D.8和106.下列调查中,适合普查的事件是()A.调查华为手机的使用寿命vB.调查市九年级学生的心理健康情况C.调查你班学生打网络游戏的情况D.调查中央电视台《中国舆论场》的节目收视率7.如图,点A,B,E在同一条直线上,正方形ABCD,BEFG的面积分别为m,n,H为线段DF的中点,则BH的长为()A. B. C. D.8.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A. B. C. D.9.用配方法解一元二次方程时,此方程可变形为()A. B. C. D.10.如图,把一个含45°角的直角三角尺BEF和个正方形ABCD摆放在起,使三角尺的直角顶点和正方形的顶点B重合,连接DF,DE,M,N分别为DF,EF的中点,连接MA,MN,下列结论错误的是()A.∠ADF=∠CDE B.△DEF为等边三角形C.AM=MN D.AM⊥MN二、填空题(每小题3分,共24分)11.如图,在矩形中,对角线与相交于点,,,则的长为________.12.若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为____.13.若一元二次方程(为常数)有两个相等的实数根,则______.14.如图,四边形ABCD中,连接AC,AB∥DC,要使AD=BC,需要添加的一个条件是_____.15.为了解某篮球队队员身高,经调查结果如下:3人,2人,2人,3人,则该篮球队队员平均身高是__________.16.已知一次函数y=2x+b,当x=3时,y=10,那么这个一次函数在y轴上的交点坐标为________.17.已知一个多边形的内角和为540°,则这个多边形是______边形.18.在平面内将一个图形绕某一定点旋转________度,图形的这种变化叫做中心对称;三、解答题(共66分)19.(10分)如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M,N分别是斜边AB,DE的中点,点P为AD的中点,连接AE、BD、MN.(1)求证:△PMN为等腰直角三角形;(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP,BD分别交于点G、H,请判断①中的结论是否成立,若成立,请证明;若不成立,请说明理由.20.(6分)如图,在平面直角坐标系中,网格图由边长为1的小正方形所构成,Rt△ABC的顶点分别是A(-1,3),B(-3,-1),C(-3,3).(1)请在图1中作出△ABC关于点(-1,0)成中心对称△,并分别写出A,C对应点的坐标;(2)设线段AB所在直线的函数表达式为,试写出不等式的解集是;(3)点M和点N分别是直线AB和y轴上的动点,若以,,M,N为顶点的四边形是平行四边形,求满足条件的M点坐标.21.(6分)甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买50元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为(元),在乙采摘园所需总费用为(元),图中折线OAB表示与x之间的函数关系.(1)甲、乙两采摘园优惠前的草莓销售价格是每千克元;(2)求、与x的函数表达式;(3)在图中画出与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围.22.(8分)两个全等的直角三角形重叠放在直线l上,如图①所示,AB=6cm,AC=10cm,∠ABC=90°,将Rt△ABC在直线l上左右平移(如图②).(1)求证:四边形ACFD是平行四边形.(2)怎样移动Rt△ABC,使得四边形ACFD的面积等于△ABC的面积的一半?(3)将Rt△ABC向左平移4cm,求四边形DHCF的面积.23.(8分)解不等式组:并写出它的所有的整数解.24.(8分)如图,直线与直线和直线分别交于点(在的上方).直线和直线交于点,点的坐标为;求线段的长(用含的代数式表示);点是轴上一动点,且为等腰直角三角形,求的值及点的坐标.25.(10分)图①、图②、图③均是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.(1)在图①、图②中,以格点为顶点,线段AB为一边,分别画一个平行四边形和菱形,并直接写出它们的面积.(要求两个四边形不全等)(2)在图③中,以点A为顶点,另外三个顶点也在格点上,画一个面积最大的正方形,并直接写出它的面积。26.(10分)解下列各题:(1)分解因式:;(2)已知,,求的值.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

此题涉及的知识点是不等式组的表示方法,根据规律可得答案.【详解】由解集在数轴上的表示可知,该不等式组为,故选D.【点睛】本题重点考查学生对于在数轴上表示不等式的解集的掌握程度,不等式组的解集的表示方法:大小小大取中间是解题关键.2、D【解析】

根据,将代数式变形,再代值计算即可.【详解】解:,当,时原式,故选:D.【点睛】本题考查了与二次根式有关的化简代值计算,需要先将代数式化为较简便的形式,再代值计算.3、C【解析】

根据平行四边形的性质,即可得出答案.【详解】∵平行四边形ABCD,∴AD∥BC,∴∠A+∠B=180°,∵∠A=40°,∴∠B=180°-40°=140°,故选C.【点睛】此题主要考查了平行四边形的性质,灵活的应用平行四边形的性质是解决问题的关键.4、B【解析】

根据题目中的函数解析式和一次函数的性质可以解答本题.【详解】解:∵直线y=2x﹣1,k=2>0,b=﹣1,∴该直线经过第一、三、四象限,不经过第二象限,故选:B.【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.5、C【解析】

解:∵,或,三角形的第三边为4或2,∵2+2=4不符合题意,,三角形的第三边为4,这个三角形的周长为故选C【点睛】此题做出来以后还要进行检验,三角形的三边关系满足,所以不符合此条件,应该舍去6、C【解析】试题解析:A、调查华为手机的使用寿命适合抽样调查;B、调查市九年级学生的心理健康情况适合抽样调查;C、调查你班学生打网络游戏的情况适合普查;D、调查中央电视台《中国舆论场》的节目收视率适合抽样调查,故选C.7、A【解析】

连接BD,BF可证△DBF为直角三角形,在通过直角三角形中斜边上的中线等于斜边的一半即可【详解】如图连接BD,BF;∵四边形ABCD和四边形BEFG都为正方形,AB=m,BE=n,∴∠DBF=90°,DB=,BF=,∴DF=,∵H为DF的中点,∴BH==,故选A【点睛】熟练掌握直角三角形中斜边上的中线等于斜边的一半和辅助线作法是解决本题的关键8、B【解析】∵y轴表示当天爷爷离家的距离,X轴表示时间又∵爷爷从家里跑步到公园,在公园打了一会儿太极拳,然后沿原路慢步走到家,∴刚开始离家的距离越来越远,到公园打太极拳时离家的距离不变,然后回家时离家的距离越来越近又知去时是跑步,用时较短,回来是慢走,用时较多∴选项B中的图形满足条件.故选B.9、D【解析】试题解析:故选D.10、B【解析】

连接DE,先根据直角三角形的性质得出AM=DF,再根据△BEF是等腰直角三角形得出AF=CE,由SAS定理得出△ADF≌△CDE,可得∠ADF=∠CDE,DE=DF,再根据点M,N分别为DF,EF的中点,得出MN是△EFD的中位线,故MN=DE,MN∥DE,可得AM=MN,由MN∥DE,可得∠FMN=∠FDE,根据三角形外角性质可得∠AMF=2∠ADM,由∠ADM+∠DEC+∠FDE=∠FMN+∠AMF=90°,可得MA⊥MN,只能得到△DEF是等腰三角形,无法得出是等边三角形,据此即可得出结论.【详解】∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠BAD=∠C=90°,∵点M是DF的中点,∴AM=DF,∵△BEF是等腰直角三角形,∴BF=BE,∴AF=CE,∴△ADF≌△CDE(SAS),∴∠ADF=∠CDE,DE=DF,∵点M,N分别为DF,EF的中点,∴MN是△EFD的中位线,∴MN=DE,∴AM=MN;∵MN是△EFD的中位线,∴MN∥DE,∴∠FMN=∠FDE,∵AM=MD,∴∠MAD=∠ADM,∵∠AMF是△ADM外角,∴∠AMF=2∠ADM.又∵∠ADM=∠DEC,∴∠ADM+∠DEC+∠FDE=∠FMN+∠AMF=90°,∴MA⊥MN,∵DE=DF,∴△DEF是等腰三角形,无法得出是等边三角形,综上,A、C、D正确,B错误,故选B.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,三角形外角的性质,直角三角形斜边中线性质等,综合性较强,熟练掌握和灵活应用相关知识是解题的关键.二、填空题(每小题3分,共24分)11、【解析】

根据矩形的性质得出OA=OB=OC=OD,∠BAD=90°,求出△AOB是等边三角形,求出OB=AB=1,根据矩形的性质求出BD,根据勾股定理求出AD即可.【详解】∵四边形ABCD是矩形,∴OA=OB=OC=OD,∠BAD=90°,∵∴△AOB是等边三角形,∴OB=AB=1,∴BD=2BO=2,在Rt△BAD中,故答案为【点睛】考查矩形的性质,勾股定理等,掌握矩形的对角线相等是解题的关键.12、1【解析】

由点A的坐标利用待定系数法即可求出正比例函数的解析式,再利用一次函数图象上点的坐标特征可求出m的值,此题得解.【详解】设正比例函数的解析式为y=kx(k≠0),∵该正比例函数图象经过点A(3,﹣6),∴﹣6=3k,解得:k=﹣1,∴正比例函数的解析式为y=﹣1x.∵点B(m,﹣4)在正比例函数y=﹣1x的图象上,∴﹣4=﹣1m,解得:m=1.故答案为:1.【点睛】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.13、±2【解析】

根据方程有两个相等的实数根结合根的判别式即可得出关于b的一元二次方程,解之即可得出结论.【详解】∵方程有两个相等的实数根,∴△=b−4×1=b−4=0,解得:b=±2.故答案为:±2【点睛】此题考查根的判别式,解题关键在于掌握判别式14、AB=CD(答案不唯一)【解析】

由AB∥DC,AB=DC证出四边形ABCD是平行四边形,即可得出AD=BC.【详解】解:添加条件为:AB=CD(答案不唯一);理由如下:∵AB∥DC,AB=CD,∴四边形ABCD是平行四边形,∴AD=BC.故答案为AB=CD(答案不唯一).【点睛】本题考查了平行四边形的判定与性质;熟记平行四边形的判定方法,证明四边形是平行四边形是解决问题的关键.15、173.1.【解析】

根据加权平均数的定义求解可得.【详解】解:(172×3+173×2+174×2+171×3)÷(3+2+2+3)=(116+346+348+121)÷10=1731÷10=173.1(cm)答:该篮球队队员平均身高是173.1cm.故答案为:173.1.【点睛】本题主要考查加权平均数,熟练掌握加权平均数的定义是解题的关键.16、(0,4)【解析】解:∵在一次函数y=2x+b中,当x=3时,y=10,∴6+b=10,解得:b=4,∴一次函数的解析式为y=2x+4,∴当x=0时,y=4,∴这个一次函数在y轴上的交点坐标为(0,4).故答案为:(0,4).点睛:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.17、5.【解析】设这个多边形是n边形,由题意得,(n-2)×180°=540°,解之得,n=5.18、1【解析】

根据中心对称的定义即可求解.【详解】在平面内将一个图形绕某一定点旋转1度,图形的这种变化叫做中心对称.故答案为1.【点睛】本题考查了中心对称的定义:把一个图形绕着某个点旋转1°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.掌握定义是解题的关键.三、解答题(共66分)19、(1)证明见解析;(2)成立,理由见解析.【解析】

(1)由等腰直角三角形的性质易证△ACE≌△BCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PM⊥PN,于是得到结论;(2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明.【详解】(1)∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠CBD+∠BDC=90°,∴∠EAC+∠BDC=90°,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM=BD,PN=AE,∴PM=PN,∵PM∥BD,PN∥AE,∴∠NPD=∠EAC,∠MPA=∠BDC,∵∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN,∴△PMN为等腰直角三角形;(2)①中的结论成立,理由:设AE与BC交于点O,如图②所示:∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD.∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°,∴AE⊥BD,∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PM∥BD,PN=AE,PN∥AE,∴PM=PN.∵AE⊥BD,∴PM⊥PN,∴△PMN为等腰直角三角形.【点睛】本题主要考查了等腰直角三角形的判定与性质、全等三角形的判定与性质以及三角形中位线定理等知识;熟练掌握等腰直角三角形的性质,证明三角形全等是解答此题的关键.20、(1)(-1,-3),(1,-3);(2)x>;(3)当点M为(2,9)或(-2,1)或(0,5)时,以A′,C′,M,N为顶点的四边形是平行四边形.【解析】

(1)直接利用中心对称的性质得出对应点位置进而得出答案;

(2)由待定系数法可求直线AB的解析式,即可求解;

(3)分A'C'为边和对角线两种情况讨论,由平行四边形的性质可求点M坐标.【详解】解:(1)如图,△A'B'C'为所求,

∴A'(-1,-3),C'(1,-3)

故答案为:(-1,-3),(1,-3)

(2)∵AB所在直线的函数表达式是y=kx+b,且过A(-1,3),B(-3,-1),∴,解得:∴AB所在直线的函数表达式是y=2x+5

∴不等式2x+5>2的解集为:x>,

故答案为:x>;(3)∵A'(-1,-3),C'(1,-3)

∴A'C'=2,A'C'∥x轴,

若A'C'为边,

∵以A′,C′,M,N为顶点的四边形是平行四边形

∴MN=A'C'=2,MN∥A'C'

∵点N在y轴上,

∴点M的横坐标为2或-2,

∵y=2×2+5=9或y=2×(-2)+5=1

∴点M(2,9)或(-2,1)

若A'C'为对角线,

∵以A′,C′,M,N为顶点的四边形是平行四边形

∴MN与A'C'互相平分,

∵点N在y轴上,A'C'的中点也在y轴上,

∴点M的横坐标为0,

∴y=5

∴点M(0,5)

综上所述:当点M为(2,9)或(-2,1)或(0,5)时,以A′,C′,M,N为顶点的四边形是平行四边形.【点睛】本题是一次函数综合题,考查了待定系数法求解析式,平行四边形的性质,中心对称的性质,利用分类讨论思想解决问题是本题的关键.21、(1)1;(2),;(3)<x<.【解析】试题分析:(1)根据单价=总价÷数量,即可解决问题.(2)y1函数表达式=50+单价×数量,y2与x的函数表达式结合图象利用待定系数法即可解决.(3)画出函数图象后y1在y2下面即可解决问题.试题解析:(1)甲、乙两采摘园优惠前的草莓销售价格是每千克10÷10=1元.故答案为1.(2)由题意,;(3)函数y1的图象如图所示,由解得:,所以点F坐标(,125),由,解得:,所以点E坐标(,650).由图象可知甲采摘园所需总费用较少时<x<.考点:分段函数;函数最值问题.22、(1)见解析;(2)将Rt△ABC向左(或右)平移2cm,可使四边形ACFD的面积等于△ABC的面积的一半.(3)18(cm2)【解析】

(1)四边形ACFD为Rt△ABC平移形成的,即可求得四边形ACFD是平行四边形;(2)先根据勾股定理得BC==8(cm),△ABC的面积=24cm2,要满足四边形ACFD的面积等于△ABC的面积的一半,即6×CF=24×,解得CF=2cm,从而求解;(3)将Rt△ABC向右平移4cm,则EH为Rt△ABC的中位线,即可求得△ADH和△CEH的面积,即可解题.【详解】(1)证明:∵四边形ACFD是由Rt△ABC平移形成的,∴AD∥CF,AC∥DF.∴四边形ACFD为平行四边形.(2)解:由题易得BC==8(cm),△ABC的面积=24cm2.要使得四边形ACFD的面积等于△ABC的面积的一半,即6×CF=24×,解得CF=2cm,∴将Rt△ABC向左(或右)平移2cm,可使四边形ACFD的面积等于△ABC的面积的一半.(3)解:将Rt△ABC向左平移4cm,则BE=AD=4cm.又∵BC=8cm,∴CE=4cm=AD.由(1)知四边形ACFD是平行四边形,∴AD∥BF.∴∠HAD=∠HCE.又∵∠DHA=∠EHC,∴△DHA≌△EHC(AAS).∴DH=HE=DE=AB=3cm.∴S△HEC=HE·EC=6cm2.∵△ABC≌△DEF,∴S△ABC=SDEF.由(2)知S△ABC=24cm2,∴S△DEF=24cm2.∴四边形DHCF的面积为S△DEF-S△HEC=24-6=18(cm2).【点睛】本题考查平行四边形的判定、三角形面积和平行四边形面积的计算,还考查了全等三角形的判定、中位线定理,考查了勾股定理在直角三角形中的运用,本题中求△CEH的面积是解题的关键.23、1、2、2【解析】

解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).最后求出整数解即可.【详解】解:解不等式①得,x≥1,解不等式②得,x<1,∴不等式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论