版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省济南市高新区重点名校中考押题数学预测卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为1.若AA'=1,则A'D等于()A.2 B.3 C. D.2.如图,已知的周长等于,则它的内接正六边形ABCDEF的面积是()A. B. C. D.3.关于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,则()A.a≠±1 B.a=1 C.a=﹣1 D.a=±14.已知A(,),B(2,)两点在双曲线上,且,则m的取值范围是()A. B. C. D.5.如图,立体图形的俯视图是A. B. C. D.6.计算的结果是()A.1 B.﹣1 C.1﹣x D.7.如图,已知l1∥l2,∠A=40°,∠1=60°,则∠2的度数为()A.40° B.60° C.80° D.100°8.如图是一个由5个相同的正方体组成的立体图形,它的三视图是()A. B.C. D.9.的倒数是()A. B.3 C. D.10.自2013年10月总书记提出“精准扶贫”的重要思想以来.各地积极推进精准扶贫,加大帮扶力度.全国脱贫人口数不断增加.仅2017年我国减少的贫困人口就接近1100万人.将1100万人用科学记数法表示为()A.1.1×103人 B.1.1×107人 C.1.1×108人 D.11×106人二、填空题(本大题共6个小题,每小题3分,共18分)11.九(5)班有男生27人,女生23人,班主任发放准考证时,任意抽取一张准考证,恰好是女生的准考证的概率是________________.12.如果,那么=_____.13.分解因式:4m2﹣16n2=_____.14.阅读下面材料:数学活动课上,老师出了一道作图问题:“如图,已知直线l和直线l外一点P.用直尺和圆规作直线PQ,使PQ⊥l于点Q.”小艾的作法如下:(1)在直线l上任取点A,以A为圆心,AP长为半径画弧.(2)在直线l上任取点B,以B为圆心,BP长为半径画弧.(3)两弧分别交于点P和点M(4)连接PM,与直线l交于点Q,直线PQ即为所求.老师表扬了小艾的作法是对的.请回答:小艾这样作图的依据是_____.15.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是________________16.二次函数y=ax2+bx+c(a≠0)的部分对应值如下表:x…﹣3﹣20135…y…70﹣8﹣9﹣57…则二次函数y=ax2+bx+c在x=2时,y=______.三、解答题(共8题,共72分)17.(8分)先化简,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣18.(8分)解不等式组,请结合题意填空,完成本题的解答.(1)解不等式①,得_____;(2)解不等式②,得_____;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为_____.19.(8分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.20.(8分)如图,在平面直角坐标系中,O为坐标原点,△AOB是等腰直角三角形,∠AOB=90°,点A(2,1).(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的函数表达式;(3)在(2)所求的抛物线上,是否存在一点P,使四边形ABOP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.21.(8分)如图1,一枚质地均匀的正六面体骰子的六个面分别标有数字1,2,3,4,5,6,如图2,正方形ABCD的顶点处各有一个圈,跳圈游戏的规则为:游戏者每掷一次骰子,骰子朝上的那面上的数字是几,就沿正方形的边按顺时针方向连续跳几个边长。如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落在圈D;若第二次掷得2,就从圈D开始顺时针连续跳2个边长,落得圈B;…设游戏者从圈A起跳.小贤随机掷一次骰子,求落回到圈A的概率P1.小南随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出他与小贤落回到圈A的可能性一样吗?22.(10分)计算:﹣22+2cos60°+(π﹣3.14)0+(﹣1)201823.(12分)如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,6),B(3,n)两点.求一次函数关系式;根据图象直接写出kx+b﹣>0的x的取值范围;求△AOB的面积.24.如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD、BD、CD.(1)求证:AD=CD;(2)若AB=10,OE=3,求tan∠DBC的值.
参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】分析:由S△ABC=9、S△A′EF=1且AD为BC边的中线知S△A′DE=S△A′EF=2,S△ABD=S△ABC=,根据△DA′E∽△DAB知,据此求解可得.详解:如图,∵S△ABC=9、S△A′EF=1,且AD为BC边的中线,∴S△A′DE=S△A′EF=2,S△ABD=S△ABC=,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则,即,解得A′D=2或A′D=-(舍),故选A.点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.2、C【解析】
过点O作OH⊥AB于点H,连接OA,OB,由⊙O的周长等于6πcm,可得⊙O的半径,又由圆的内接多边形的性质可得∠AOB=60°,即可证明△AOB是等边三角形,根据等边三角形的性质可求出OH的长,根据S正六边形ABCDEF=6S△OAB即可得出答案.【详解】过点O作OH⊥AB于点H,连接OA,OB,设⊙O的半径为r,∵⊙O的周长等于6πcm,∴2πr=6π,解得:r=3,∴⊙O的半径为3cm,即OA=3cm,∵六边形ABCDEF是正六边形,∴∠AOB=×360°=60°,OA=OB,∴△OAB是等边三角形,∴AB=OA=3cm,∵OH⊥AB,∴AH=AB,∴AB=OA=3cm,∴AH=cm,OH==cm,∴S正六边形ABCDEF=6S△OAB=6××3×=(cm2).故选C.【点睛】此题考查了正多边形与圆的性质.此题难度适中,注意掌握数形结合思想的应用.3、C【解析】
根据一元一次方程的定义即可求出答案.【详解】由题意可知:,解得a=−1故选C.【点睛】本题考查一元二次方程的定义,解题的关键是熟练运用一元二次方程的定义,本题属于基础题型.4、D【解析】
∵A(,),B(2,)两点在双曲线上,∴根据点在曲线上,点的坐标满足方程的关系,得.∵,∴,解得.故选D.【详解】请在此输入详解!5、C【解析】试题分析:立体图形的俯视图是C.故选C.考点:简单组合体的三视图.6、B【解析】
根据同分母分式的加减运算法则计算可得.【详解】解:原式====-1,故选B.【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握同分母分式的加减运算法则.7、D【解析】
根据两直线平行,内错角相等可得∠3=∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:∵l1∥l2,∴∠3=∠1=60°,∴∠2=∠A+∠3=40°+60°=100°.故选D.【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.8、D【解析】
找到从正面、左面、上看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【详解】解:此几何体的主视图有两排,从上往下分别有1,3个正方形;
左视图有二列,从左往右分别有2,1个正方形;
俯视图有三列,从上往下分别有3,1个正方形,
故选A.【点睛】本题考查了三视图的知识,关键是掌握三视图所看的位置.掌握定义是关键.此题主要考查了简单组合体的三视图,准确把握观察角度是解题关键.9、A【解析】
解:的倒数是.故选A.【点睛】本题考查倒数,掌握概念正确计算是解题关键.10、B【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:1100万=11000000=1.1×107.故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题(本大题共6个小题,每小题3分,共18分)11、23【解析】
用女生人数除以总人数即可.【详解】由题意得,恰好是女生的准考证的概率是2350故答案为:2350【点睛】此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn12、【解析】试题解析:设a=2t,b=3t,故答案为:13、4(m+2n)(m﹣2n).【解析】
原式提取4后,利用平方差公式分解即可.【详解】解:原式=4().故答案为【点睛】本题考查提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法.14、到线段两端距离相等的点在线段的垂直平分线上或两点确定一条直线或sss或全等三角形对应角相等或等腰三角形的三线合一【解析】
从作图方法以及作图结果入手考虑其作图依据..【详解】解:依题意,AP=AM,BP=BM,根据垂直平分线的定义可知PM⊥直线l.因此易知小艾的作图依据是到线段两端距离相等的点在线段的垂直平分线上;两点确定一条直线.故答案为到线段两端距离相等的点在线段的垂直平分线上;两点确定一条直线.【点睛】本题主要考查尺规作图,掌握尺规作图的常用方法是解题关键.15、【解析】由图形可得:16、﹣1【解析】试题分析:观察表中的对应值得到x=﹣3和x=5时,函数值都是7,则根据抛物线的对称性得到对称轴为直线x=1,所以x=0和x=2时的函数值相等,解:∵x=﹣3时,y=7;x=5时,y=7,∴二次函数图象的对称轴为直线x=1,∴x=0和x=2时的函数值相等,∴x=2时,y=﹣1.故答案为﹣1.三、解答题(共8题,共72分)17、【解析】
原式去括号合并得到最简结果,把a与b的值代入计算即可求出值;【详解】解:原式=a2﹣3ab+a2+2ab+b2﹣a2+ab=a2+b2,当a=1、b=﹣时,原式=12+(﹣)2=1+=.【点睛】考查了整式的加减-化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.18、(1)x>1;(1)x≤1;(3)答案见解析;(4)1<x≤1.【解析】
根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.【详解】解:(1)解不等式①,得x>1;(1)解不等式②,得x≤1;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为:1<x≤1.【点睛】本题考查了一元一次不等式组的解法,掌握确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键.19、(1)见解析(2)【解析】试题分析:(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置,再利用锐角三角三角函数关系得出答案.试题解析:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,由图形可知,∠A2C2B2=∠ACB,过点A作AD⊥BC交BC的延长线于点D,由A(2,2),C(4,﹣4),B(4,0),易得D(4,2),故AD=2,CD=6,AC==,∴sin∠ACB===,即sin∠A2C2B2=.考点:作图﹣位似变换;作图﹣平移变换;解直角三角形.20、(1)B(-1.2);(2)y=;(3)见解析.【解析】
(1)过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,则可证明△ACO≌△ODB,则可求得OD和BD的长,可求得B点坐标;(2)根据A、B、O三点的坐标,利用待定系数法可求得抛物线解析式;(3)由四边形ABOP可知点P在线段AO的下方,过P作PE∥y轴交线段OA于点E,可求得直线OA解析式,设出P点坐标,则可表示出E点坐标,可表示出PE的长,进一步表示出△POA的面积,则可得到四边形ABOP的面积,再利用二次函数的性质可求得其面积最大时P点的坐标.【详解】(1)如图1,过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,∵△AOB为等腰三角形,∴AO=BO,∵∠AOB=90°,∴∠AOC+∠DOB=∠DOB+∠OBD=90°,∴∠AOC=∠OBD,在△ACO和△ODB中∴△ACO≌△ODB(AAS),∵A(2,1),∴OD=AC=1,BD=OC=2,∴B(-1,2);(2)∵抛物线过O点,∴可设抛物线解析式为y=ax2+bx,把A、B两点坐标代入可得,解得,∴经过A、B、O原点的抛物线解析式为y=x2-x;(3)∵四边形ABOP,∴可知点P在线段OA的下方,过P作PE∥y轴交AO于点E,如图2,设直线AO解析式为y=kx,∵A(2,1),∴k=,∴直线AO解析式为y=x,设P点坐标为(t,t2-t),则E(t,t),∴PE=t-(t2-t)=-t2+t=-(t-1)2+,∴S△AOP=PE×2=PE═-(t-1)2+,由A(2,1)可求得OA=OB=,∴S△AOB=AO•BO=,∴S四边形ABOP=S△AOB+S△AOP=-(t-1)2++=,∵-<0,∴当t=1时,四边形ABOP的面积最大,此时P点坐标为(1,-),综上可知存在使四边形ABOP的面积最大的点P,其坐标为(1,-).【点睛】本题为二次函数的综合应用,主要涉及待定系数法、等腰直角三角形的性质、全等三角形的判定和性质、三角形的面积以及方程思想等知识.在(1)中构造三角形全等是解题的关键,在(2)中注意待定系数法的应用,在(3)中用t表示出四边形ABOP的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.21、(1)落回到圈A的概率P1【解析】
(1)由共有6种等可能的结果,落回到圈A的只有1种情况,直接利用概率公式求解即可求得答案;
(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与最后落回到圈A的情况,再利用概率公式求解即可求得答案.【详解】(1)∵掷一次骰子有6种等可能的结果,只有掷的4时,才会落回到圈A,∴落回到圈A的概率P1(2)列表得:1234561((((((2((((((3((((((4((((((5((((((6((((((∵共有36种等可能的结果,当两次掷得的数字之和为4的倍数,即(1,3)(2,2)(2,6∴p2∵P1∴可能性不一样【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.22、-1【解析】
原式利用乘方的意义,特殊角的三角函数值,零指数幂法则计算即可求出值.【详解】解:原式=﹣4+1+1+1=﹣1.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.23、(1)y=-2x+1;(2)1<x<2;(2)△AOB的面积为1.【解析】试题分析:(1)首先根据A(m,6),B(2,n)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 海南职业技术学院《电视摄像基础》2023-2024学年第一学期期末试卷
- 二零二五年度担保合同标的特性与信用管理3篇
- 二零二五年度新媒体运营兼职聘任合同范本3篇
- 海南师范大学《游泳训练理论与实践》2023-2024学年第一学期期末试卷
- 2025年度小额贷款反担保偿还服务合同模板3篇
- 2025年度架工承包合同服务内容扩展2篇
- 二零二五年度建筑工程施工现场环境保护教育培训合同3篇
- 二零二五年度桥梁栏杆维修与加固服务合同3篇
- 二零二五年度旧电器买卖与环保回收处理合同3篇
- 二零二五年度假山景区生态保护与可持续发展承包合同3篇
- 品牌管理第五章品牌体验课件
- 基于CAN通讯的储能变流器并机方案及应用分析报告-培训课件
- 外科医师手术技能评分标准
- 保姆级别CDH安装运维手册
- 菌草技术及产业化应用课件
- GB∕T 14527-2021 复合阻尼隔振器和复合阻尼器
- 隧道二衬、仰拱施工方案
- 颤病(帕金森病)中医护理常规
- 果胶项目商业计划书(模板范本)
- 旋挖钻成孔掏渣筒沉渣处理施工工艺
- 安全资料目录清单
评论
0/150
提交评论