海南省三亚市妙联学校2024年数学八年级下册期末教学质量检测模拟试题含解析_第1页
海南省三亚市妙联学校2024年数学八年级下册期末教学质量检测模拟试题含解析_第2页
海南省三亚市妙联学校2024年数学八年级下册期末教学质量检测模拟试题含解析_第3页
海南省三亚市妙联学校2024年数学八年级下册期末教学质量检测模拟试题含解析_第4页
海南省三亚市妙联学校2024年数学八年级下册期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

海南省三亚市妙联学校2024年数学八年级下册期末教学质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.下列说法正确的是()A.五边形的内角和是720°B.有两边相等的两个直角三角形全等C.若关于的方程有增根,则D.若关于的不等式恰有2个正整数解,则的最大值是42.如图,在正方形纸片ABCD中,E,F分别是AD,BC的中点,沿过点B的直线折叠,使点C落在EF上,落点为N,折痕交CD边于点M,BM与EF交于点P,再展开.则下列结论中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等边三角形.正确的有()A.1个 B.2个 C.3个 D.4个3.甲、乙、丙、丁四名射击队员考核赛的平均成绩(环)及方差统计如表,现要根据这些数据,从中选出一人参加比赛,如果你是教练员,你的选择是()队员平均成绩方差甲9.72.12乙9.60.56丙9.70.56丁9.61.34A.甲 B.乙 C.丙 D.丁4.要使分式2x-1有意义,则x的取值范围是(

A.x>1 B.x≠1 C.x<1 D.x≠-1.5.如图,在四边形中,,且,,给出以下判断:①四边形是菱形;②四边形的面积;③顺次连接四边形的四边中点得到的四边形是正方形;④将沿直线对折,点落在点处,连接并延长交于点,当时,点到直线的距离为;其中真确的是()A.①③ B.①④ C.②③ D.②④6.如图,直线L与双曲线交于A、C两点,将直线L绕点O顺时针旋转a度角(0°<a≤45°),与双曲线交于B、D两点,则四边形ABCD形状一定是()A.平行四边形 B.菱形 C.矩形 D.任意四边形7.如图,,点D在AB的垂直平分线上,点E在AC的垂直平分线上,则的度数是().A.15° B.20° C.25° D.30°8.已知点(﹣2,y1),(﹣1,y2),(1,y3)都在直线y=﹣3x+2上,则y1,y2,y3的值的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y3>y1>y2D.y1>y2>y39.如图,在中,,分别为,的中点,若,则的长为A.3 B.4 C.5 D.610.如图,中,于点,于点,,,.则等于()A. B. C. D.二、填空题(每小题3分,共24分)11.在一列数2,3,3,5,7中,他们的平均数为__________.12.如图,已知E是正方形ABCD的边AB上一点,点A关于DE的对称点为F,若正方形ABCD的边长为1,且∠BFC=90°,则AE的长为___13.已知,是一元二次方程的两个实数根,则的值是______.14.若式子x-2有意义,则x的取值范围是________15.如图①,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B.图②是点F运动时,△FBC的面积y(cm)随时间x(s)变化的关系图象,则a的值是__16.王明在计算一道方差题时写下了如下算式:,则其中的____________.17.若方程组的解是,则直线y=﹣2x+b与直线y=x﹣a的交点坐标是_____.18.矩形的一边长是3.6㎝,两条对角线的夹角为60º,则矩形对角线长是___________.三、解答题(共66分)19.(10分)某车间加工300个零件,加工完80个以后,改进了操作方法,每天能多加工15个,一共用了6天完成任务.求改进操作方法后每天加工的零件个数.20.(6分)如图,已知点A在反比例函数(x>0)的图像上,过点A作AC⊥x轴,垂足是C,AC=OC.一次函数y=kx+b的图像经过点A,与y轴的正半轴交于点B.(1)求点A的坐标;(2)若四边形ABOC的面积是,求一次函数y=kx+b的表达式.21.(6分)4月23日是世界读书日,总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读,该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:):3060815044110130146801006080120140758110308192课外阅读时间等级人数38平均数中位数众数8081四、得出结论:①表格中的数据:,,;②用样本中的统计量估计该校学生每周用于课外阅读时间的等级为;③如果该校现有学生400人,估计等级为“”的学生有人;④假设平均阅读一本课外书的时间为320分钟,请你用样本平均数估计该校学生每人一年(按52周计算)平均阅读本课外书.22.(8分)(1)计算:﹣+×(2)解方程:3x(x+4)=2(x+4)23.(8分)如图,已知四边形ABCD是平行四边形,点E,F分别是AB,BC上的点,AE=CF,并且∠AED=∠CFD.求证:(1)△AED≌△CFD;(2)四边形ABCD是菱形.24.(8分)在平面直角坐标系中,直线l1:y=x+5与反比例函数y=(k≠0,x>0)图象交于点A(1,n);另一条直线l2:y=﹣2x+b与x轴交于点E,与y轴交于点B,与反比例函数y=(k≠0,x>0)图象交于点C和点D(,m),连接OC、OD.(1)求反比例函数解析式和点C的坐标;(2)求△OCD的面积.25.(10分)(2013年四川广安8分)某商场筹集资金12.8万元,一次性购进空调、彩电共30台.根据市场需要,这些空调、彩电可以全部销售,全部销售后利润不少于1.5万元,其中空调、彩电的进价和售价见表格.空调彩电进价(元/台)54003500售价(元/台)61003900设商场计划购进空调x台,空调和彩电全部销售后商场获得的利润为y元.(1)试写出y与x的函数关系式;(2)商场有哪几种进货方案可供选择?(3)选择哪种进货方案,商场获利最大?最大利润是多少元?26.(10分)近些年全国各地频发雾霾天气,给人民群众的身体健康带来了危害,某商场看到商机后决定购进甲、乙两种空气净化器进行销售.若每台甲种空气净化器的进价比每台乙种空气净化器的进价少300元,且用6000元购进甲种空气净化器的数量与用7500元购进乙种空气净化器的数量相同.(1)求每台甲种空气净化器、每台乙种空气净化器的进价分别为多少元?(2)若该商场准备进货甲、乙两种空气净化器共30台,且进货花费不超过42000元,问最少进货甲种空气净化器多少台?

参考答案一、选择题(每小题3分,共30分)1、D【解析】

根据多边形内角和定理,全等三角形的判定,分式方程的解,不等式的正整数解分别进行判断即可解答.【详解】五边形的内角和,所以,A错误;B选项所述相等的两边中,可能出现一个直角三角形的直角边和另一个三角形的斜边相等的情形,这种情况下两三角形不全等,所以,B错误;选项C中的方程的增根只能是,且应是整式方程的根,由此可得,.故C错误;故选D.【点睛】此题考查多边形内角和定理,全等三角形的判定,分式方程的解,不等式的正整数解,解题关键在于掌握各性质定理.2、C【解析】∵△BMN是由△BMC翻折得到的,∴BN=BC,又点F为BC的中点,在Rt△BNF中,sin∠BNF=,∴∠BNF=30°,∠FBN=60°,∴∠ABN=90°-∠FBN=30°,故②正确;在Rt△BCM中,∠CBM=∠FBN=30°,∴tan∠CBM=tan30°=,∴BC=CM,AB2=3CM2故③正确;∠NPM=∠BPF=90°-∠MBC=60°,∠NMP=90°-∠MBN=60°,∴△PMN是等边三角形,故④正确;由题给条件,证不出CM=DM,故①错误.故正确的有②③④,共3个.故选C.3、C【解析】

首先比较平均数,然后比较方差,方差越小,越稳定.【详解】∵==9.7,S2甲>S2丙,∴选择丙.故选:C.【点睛】此题考查了方差的知识.注意方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.4、B【解析】

根据分式有意义的条件即可解答.【详解】根据题意可知,x-1≠0,即x≠1.故选B.【点睛】本题考查了分式有意义的条件,熟知分式有意义,分母不为0是解决问题的关键.5、D【解析】

根据可判定①错误;根据AB=AD,BC=CD,可推出AC是线段BD的垂直平分线,可得②正确;现有条件不足以推出中点四边形是正方形,故③错误;连接AF,设点F到直线AB的距离为h,作出图形,求出h的值,可知④正确。可得正确选项。【详解】解:∵在四边形ABCD中,∴四边形不可能是菱形,故①错误;∵在四边形ABCD中,AB=AD=5,BC=CD,∴AC是线段BD的垂直平分线,∴四边形的面积,故②正确;由已知得顺次连接四边形的四边中点得到的四边形是矩形,不是正方形,故③错误;将△ABD沿直线BD对折,点A落在点E处,连接BE并延长交CD于点F,如图所示,

连接AF,设点F到直线AB的距离为h,

由折叠可得,四边形ABED是菱形,AB=BE=5=AD=DE,BO=DO=4,

∴AO=EO=3,∵BF⊥CD,BF∥AD,∵S△ABF=S梯形ABFD-S△ADF,解得,故④正确故选:D【点睛】本题主要考查了菱形的判定与性质,线段垂直平分线的性质以及勾股定理的综合运用,第④个稍复杂一些,解决问题的关键是作出正确的图形进行计算.6、A【解析】试题分析:根据反比例函数的性质可得OA=OC,OB=OD,再根据平行四边形的判定方法即可作出判断.解:∵反比例函数图象关于原点对称∴OA=OC,OB=OD∴四边形ABCD是平行四边形.考点:反比例函数的性质,平行四边形的判定点评:解题的关键是熟练掌握反比例函数图象关于原点对称,对角线互相平分的四边形是平行四边形.7、B【解析】

根据线段的垂直平分线的性质得到DB=DA,EC=EA,根据等腰三角形的性质解答即可.【详解】解:∵AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,

∴DB=DA,EC=EA,

∵∠BAC=100°,

∴∠B+∠C=80°,

∵DB=DA,EC=EA,

∴∠DAB=∠B,∠EAC=∠C,

∴∠DAB+∠EAC=80°,

∴∠DAE=100°-80°=20°,故选B.【点睛】本题考查了三角形内角和定理,线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.8、D【解析】k=-3<0,所以函数y随x增大而减小,所以y1>y2>y3,所以选D.9、D【解析】

根据三角形的中位线定理得出AB=2DE,把DE的值代入即可.【详解】,分别为,的中点,,故选:.【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键.10、B【解析】

由平行四边形的性质得出CD=AB=9,得出S▱ABCD=BC•AE=CD•AF,即可得出结果.【详解】∵四边形ABCD是平行四边形,∴CD=AB=9,∵AE⊥BC于点E,AF⊥CD于点F,AF=12,AE=8,∴S▱ABCD=BC•AE=CD•AF,即BC×8=9×12,解得:BC=;故选:B.【点睛】此题考查了平行四边形的性质以及平行四边形的面积公式运用,此题难度适中,注意掌握方程思想与数形结合思想的应用.二、填空题(每小题3分,共24分)11、1【解析】

直接利用算术平均数的定义列式计算可得.【详解】解:这组数据的平均数为=1,故答案为:1.【点睛】本题主要考查算术平均数,解题的关键是掌握算术平均数的定义.12、【解析】

延长EF交CB于M,连接DM,根据正方形的性质得到AD=DC,∠A=∠BCD=90°,由折叠的性质得到∠DFE=∠DFM=90°,通过Rt△DFM≌Rt△DCM,于是得到MF=MC.由等腰三角形的性质得到∠MFC=∠MCF由余角的性质得到∠MFC=∠MBF,于是求得MF=MB,根据勾股定理即可得到结论.【详解】如图,延长EF交CB于M,连接DM,∵四边形ABCD是正方形,∴AD=DC,∠A=∠BCD=90°,∵将△ADE沿直线DE对折得到△DEF,∴∠DFE=∠DFM=90°,在Rt△DFM与Rt△DCM中,,∴Rt△DFM≌Rt△DCM(HL),∴MF=MC,∴∠MFC=∠MCF,∵∠MFC+∠BFM=90°,∠MCF+∠FBM=90°,∴∠MFB=∠MBF,∴MB=MC,∴MF=MC=BM=,设AE=EF=x,∵BE2+BM2=EM2,即(1-x)2+()2=(x+)2,解得:x=,∴AE=,故答案为:.【点睛】本题考查了翻折变换-折叠问题,正方形的性质,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.13、1【解析】

根据一元二次方程的根与系数的关系即可解答.【详解】解:根据一元二次方程的根与系数关系可得:,所以可得故答案为1.【点睛】本题主要考查一元二次方程的根与系数关系,这是一元二次方程的重点知识,必须熟练掌握.14、x【解析】分析:根据被开方数为非负数列不等式求解即可.详解:由题意得,x-2≥0,∴x≥2.故答案为x≥2.点睛:本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.15、【解析】

过点D作DE⊥BC于点E,通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE;再由图象可知,BD=,在Rt△DBE中应用勾股定理求BE的值,进而在Rt△DEC应用勾股定理求a的值.【详解】过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm.∴AD=a,∴DE·AD=a,∴DE=2.当点F从D到B时,用s,∴BD=.Rt△DBE中,BE=.∵ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a=2+(a-1),解得a=.【点睛】此题考查菱形的性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系;16、1.865【解析】

先计算出4个数据的平均数,再计算出方差即可.【详解】∵,∴=====1.865.故答案为:1.865.【点睛】此题主要考查了方差的计算,求出平均数是解决此题的关键.17、(-1,3)【解析】

直线y=-2x+b可以变成:2x+y=b,直线y=x-a可以变成:x-y=a,∴两直线的交点即为方程组的解,故交点坐标为(-1,3).故答案为(-1,3).18、7.2cm或cm【解析】①边长3.6cm为短边时,

∵四边形ABCD为矩形,

∴OA=OB,

∵两对角线的夹角为60°,

∴△AOB为等边三角形,

∴OA=OB=AB=3.6cm,

∴AC=BD=2OA=7.2cm;

②边长3.6cm为长边时,

∵四边形ABCD为矩形

∴OA=OB,

∵两对角线的夹角为60°,

∴△AOB为等边三角形,

∴OA=OB=AB,BD=2OB,∠ABD=60°,

∴OB=AB=,∴BD=;故答案是:7.2cm或cm.三、解答题(共66分)19、改进操作方法后每天加工零件55个【解析】

设改进技术后每天加工零件x个,则改进技术前每天加工(x﹣15)个,改进前制造80个需要的时间是天,改进技术后220个需要的时间是天,根据前后共用的时间是6天建立方程求出其解即可.【详解】解:设改进操作方法后每天加工零件的件数为x件,则改进操作方法前每天加工零件(x-15)个,依题意得+=6去分母,整理,得:x2-65x+550=0∴x1=10,x2=55经检验,它们都是方程的根,但x=10时,x-15=-5不合题意,所以只能取x=55答:改进操作方法后每天加工零件55个【点睛】本题考查了列分式方程解决工程问题,化为一元二次方程的分式方程的解法的运用,解答时根据前后共用的时间是6天建立方程是关键.解答分式方程需要验根不得忘记.20、(1);(2)y=+2【解析】

(1)由AC=OC,设A(m,m)代入反比例函数得m2=9,求出A点坐标;(2)利用四边形ABOC的面积求出B点坐标,再用待定系数法确定函数关系式即可求出AB的解析式.【详解】(1)∵AC=OC∴可设A(m,m)∵点A(m,m)在y=的图像上∴m2=9∴m=±3∵x>0∴m=3(2)∵AC⊥x轴,OB⊥x轴∴S四边形ABOC==(3+OB)·3=∴OB=2∴B(0,2)∵y=kx+b过点A(3,3),B(0,2)∴∴∴一次函数的表达式为y=+2【点睛】此题主要考查反比例函数钰一次函数综合,解题的关键是求出A点坐标.21、①5、4、80.5;②;③160;④1.【解析】

①根据已知数据和中位数的概念可得;②由样本中位数和众数、平均数都是B等级可得答案;③利用样本估计总体思想求解可得;④用没有阅读书籍的平均时间乘以一年的周数,再除以阅读每本书所需时间即可得.【详解】①由已知数据知,,第10、11个数据分别为80、81,中位数,故答案为:5、4、80.5;②用样本中的统计量估计该校学生每周用于课外阅读时间的等级为,故答案为:;③估计等级为“”的学生有(人),故答案为:160;④估计该校学生每人一年(按52周计算)平均阅读课外书(本),故答案为:1.【点睛】此题主要考查数据的统计和分析的知识.准确把握三数(平均数、中位数、众数)和理解样本和总体的关系是关键.22、(1);(2)x1=,x2=﹣1.【解析】

(1)先化简二次根式,二次根式乘法运算,然后计算加减法;(2)先移项,再用因式分解即可.【详解】解:(1)原式=﹣+2=;(2)由原方程,得(3x﹣2)(x+1)=0,所以3x﹣2=0或x+1=0,解得x1=,x2=﹣1.【点睛】本题考查的是二次根式的混合运算和方程求解,熟练掌握因式分解和化简是解题的关键.23、(1)证明见解析;(2)证明见解析.【解析】分析:(1)由全等三角形的判定定理ASA证得结论;(2)由“邻边相等的平行四边形为菱形”证得结论.详解:(1)证明:∵四边形ABCD是平行四边形,∴∠A=∠C.在△AED与△CFD中,,∴△AED≌△CFD(ASA);(2)由(1)知,△AED≌△CFD,则AD=CD.又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.点睛:考查了菱形的判定,全等三角形的判定与性质以及平行四边形的性质,解题的关键是掌握相关的性质与定理.24、(1)y=,点C(6,1);(2).【解析】

(1)点A(1,n)在直线l1:y=x+5的图象上,可求点A的坐标,进而求出反比例函数关系式,点D在反比例函数的图象上,求出点D的坐标,从而确定直线l2:y=﹣2x+b的关系式,联立求出直线l2与反比例函数的图象的交点坐标,确定点C的坐标,(2)求出直线l2与x轴、y轴的交点B、E的坐标,利用面积差可求出△OCD的面积.【详解】解:(1)∵点A(1,n)在直线l1:y=x+5的图象上,∴n=6,∴点A(1,6)代入y=得,k=6,∴反比例函数y=,当x=时,y=12,∴点D(,12)代入直线l2:y=﹣2x+b得,b=13,∴直线l2:y=﹣2x+13,由题意得:解得:,,∴点C(6,1)答:反比例函数解析式y=,点C的坐标为(6,1).(2)直线l2:y=﹣2x+13,与x轴的交点E(,0)与y轴的交点B(0,13)∴S△OCD=S△BOE﹣S△BOD﹣S△OCE答:△OCD的面积为.【点睛】本题考查了待定系数法求反比例函数解析式、反比例函数与一次函数交点问题、以及反比例函数与几何面积的求解,解题的关键是灵活处理反比例函数与一次函数及几何的关系.25、解:(1)设商场计划购进空调x台,则计划购进彩电(30﹣x)台,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论