辽宁省沈阳和平区五校联考2024届数学八年级下册期末检测试题含解析_第1页
辽宁省沈阳和平区五校联考2024届数学八年级下册期末检测试题含解析_第2页
辽宁省沈阳和平区五校联考2024届数学八年级下册期末检测试题含解析_第3页
辽宁省沈阳和平区五校联考2024届数学八年级下册期末检测试题含解析_第4页
辽宁省沈阳和平区五校联考2024届数学八年级下册期末检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省沈阳和平区五校联考2024届数学八年级下册期末检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.平面直角坐标系内,将点向左平移3个长度单位后得到点N,则点N的坐标是()A. B. C. D.2.点(﹣2,﹣1)在平面直角坐标系中所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.如图,中,于点,点为的中点,连接,则的周长是()A.4+2 B.7+ C.12 D.104.甲、乙、丙、丁四名同学在一次投掷实心球训练中,在相同条件下各投掷10次,他们成绩的平均数与方差s2如下表:若要选一名成绩好且发挥稳定的同学参加比赛,则应该选择()A.甲 B.乙 C.丙 D.丁5.下列说法正确的是()A.是二项方程 B.是二元二次方程C.是分式方程 D.是无理方程6.已知点P(a,m),Q(b,n)是反比例函数y图象上两个不同的点,则下列说法不正确的是()A.am=2 B.若a+b=0,则m+n=0C.若b=3a,则nm D.若a<b,则m>n7.下列数据特征量:平均数、中位数、众数、方差之中,反映集中趋势的量有()个.A. B. C. D.8.随着私家车的增加,交通也越来越拥挤,通常情况下,某段公路上车辆的行驶速度(千米/时)与路上每百米拥有车的数量x(辆)的关系如图所示,当x≥8时,y与x成反比例函数关系,当车速度低于20千米/时,交通就会拥堵,为避免出现交通拥堵,公路上每百米拥有车的数量x应该满足的范围是()A.x<32 B.x≤32 C.x>32 D.x≥329.《九章算术》记载“今有邑方不知大小,各中开门.出北门三十步有木,出西门七百五十步见木.问邑方有几何?”意思是:如图,点M、点N分别是正方形ABCD的边AD、AB的中点,ME⊥AD,NF⊥AB,EF过点A,且ME=30步,NF=750步,则正方形的边长为()A.150步 B.200步 C.250步 D.300步10.用配方法解方程x2﹣8x+7=0,配方后可得()A.(x﹣4)2=9 B.(x﹣4)2=23C.(x﹣4)2=16 D.(x+4)2=9二、填空题(每小题3分,共24分)11.在Rt△ABC中,∠C=90°,AC=3,BC=1.作一边的垂直平分线交另一边于点D,则CD的长是______.12.如图,已知中,,将绕点A逆时针方向旋转到的位置,连接,则的长为__________.13.如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点,当AB:AD=___________时,四边形MENF是正方形.14.直线与平行,且经过(2,1),则+=____________.15.如图,在△ABC中,∠BAC=60°,点D在BC上,AD=10,DE⊥AB,DF⊥AC,垂足分别为E,F,且DE=DF,则DE的长为______.16.有一张一个角为30°,最小边长为4的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是.17.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,则下列四个结论:①c>0;②2a+b=0;③b2-4ac>0;④a-b+c>0;正确的是_____.18.如图,在直角坐标系中,菱形ABCD的顶点坐标C(-1,0)、B(0,2)、D(n,2),点A在第二象限.直线y=-x+5与x轴、y轴分别交于点N、M.将菱形ABCD沿x轴向右平移m个单位.当点A落在MN上时,则m+n=________三、解答题(共66分)19.(10分)在▱ABCD中,点E,F分别在边BC,AD上,且AF=CE.(Ⅰ)如图①,求证四边形AECF是平行四边形;(Ⅱ)如图②,若∠BAC=90°,且四边形AECF是边长为6的菱形,求BE的长.20.(6分)一家水果店以每千克2元的价格购进某种水果若干千克,然后以每千克4元的价格出售,每天可售出100千克,通过调查发现,这种水果每千克的售价每降低1元,每天可多售出200千克.(1)若将这种水果每千克的售价降低元,则每天销售量是多少千克?(结果用含的代数式表示)(2)若想每天盈利300元,且保证每天至少售出260千克,那么水果店需将每千克的售价降低多少元?21.(6分)某公司招聘职员,对甲、乙两位候选人进行了面试,面试中包括形体、口才、专业知识,他们的成绩(百分制)如下表:(1)如果公司根据经营性质和岗位要求,以面试成绩中形体、口才、专业知识按照的比值确定成绩,请计算甲、乙两人各自的平均成绩,看看谁将被录取?(2)如果公司根据经营性质和岗位要求,以面试成绩中形体占,口才占,专业知识占确定成绩,那么你认为该公司应该录取谁?22.(8分)某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:加工件数540450300240210120人数112632(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),你认为这个定额是否合理,为什么?23.(8分)如图,梯形ABCD中,AB//CD,且AB=2CD,E,F分别是AB,BC的中点.EF与BD相交于点M.(1)求证:△EDM∽△FBM;(2)若DB=9,求BM.24.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣.某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数.25.(10分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣6,0)、C(﹣1,0).(1)画出△ABC关于原点成中心对称的三角形△A′B′C′;(2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点B″的坐标;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.26.(10分)如图,在ABCD中,经过A,C两点分别作AE⊥BD,CF⊥BD,E,F为垂足.(1)求证:△AED≌△CFB;(2)求证:四边形AFCE是平行四边形.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

向左平移3个长度单位,即点M的横坐标减3,纵坐标不变,得到点N.【详解】解:点A(m,n)向左平移3个长度单位后,坐标为(m-3,n),

即点N的坐标是(m-3,n),

故选B.【点睛】本题考查坐标与图形变化-平移,在平面直角坐标系中,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.2、C【解析】

根据横纵坐标的符号可得相关象限.【详解】∵点的横纵坐标均为负数,∴点(-1,-2)所在的象限是第三象限,故选C.【点睛】本题考查了点的坐标,用到的知识点为:横纵坐标均为负数的点在第三象限.3、D【解析】

根据等腰三角形三线合一的性质,先求出BE,再利用直角三角形斜边中线定理求出DE即可.【详解】∵在△ABC中,AB=AC=6,AE平分∠BAC,∴BE=CE=BC=4,又∵D是AB中点,∴BD=AB=3,∴DE是△ABC的中位线,∴DE=AC=3,∴△BDE的周长为BD+DE+BE=3+3+4=1.故选:D.【点睛】本题主要考查了直角三角形斜边中线定理及等腰三角形的性质:是三线合一,是中学阶段的常规题.4、A【解析】

要选一名成绩好的学生只要求平均数最高;要选择发挥稳定的同学参加比赛,只要求方差比较小即可,进而求解.【详解】根据表格可知,甲乙平均数最高,但甲的方差小,∴选择甲.故选A.【点睛】本题主要考查了平均数、方差解题的关键是掌握平均数、方差的意义.5、A【解析】

根据整式方程、分式方程和无理方程的概念逐一判断即可得.【详解】A.方程是一般式,且方程的左边只有2项,此方程是二项方程,此选项正确;B.x2y−y=2是二元三次方程,此选项错误;C.是一元一次方程,属于整式方程,此选项错误;D.是一元二次方程,属于整式方程;故选A.【点睛】本题主要考查无理方程,解题的关键是掌握整式方程、分式方程和无理方程的定义.6、D【解析】

根据题意得:am=bn=2,将B,C选项代入可判断,根据反比例函数图象的性质可直接判断D是错误的.【详解】∵点P(a,m),Q(b,n)是反比例函数y图象上两个不同的点,∴am=bn=2,若a+b=0,则a=﹣b,∴﹣bm=bn,∴﹣m=n即m+n=0,若b=3a,∴am=3an,∴nm,故A,B,C正确,若a<0<b,则m<0,n>0,∴m<n,故D是错误的,故选D.【点睛】本题考查了反比例函数图象上点的坐标特征,关键是灵活运用反比例函数图象的性质解决问题.7、B【解析】

根据平均数、中位数、众数、方差的性质判断即可.【详解】数据的平均数、众数、中位数是描述一组数据集中趋势的特征量,方差是衡量一组数据偏离其平均数的大小(即波动大小)的特征数.故选B.【点睛】本题考查的是平均数、中位数、众数、方差,掌握它们的性质是解题的关键.8、B【解析】

利用已知反比例函数图象过(8,80),得出其函数解析式,再利用y=20时,求出x的最值,进而求出x的取值范围.【详解】解:设反比例函数的解析式为:,则将(8,80),代入,得:k=xy=8×80=640,∴反比例函数的解析式为:故当车速度为20千米/时,则,解得:x=1,故高架桥上每百米拥有车的数量x应该满足的范围是:0<x≤1.故答案为x≤1.【点睛】此题主要考查了反比例函数的应用,根据题意得出函数解析式是解题关键.9、D【解析】

根据题意,可知Rt△AEM∽Rt△FAN,从而可以得到对应边的比相等,从而可以求得正方形的边长.【详解】解:设正方形的边长为x步,∵点M、点N分别是正方形ABCD的边AD、AB的中点,∴AM=AD,AN=AB,∴AM=AN,由题意可得,Rt△AEM∽Rt△FAN,∴,即AM2=30×750=22500,解得:AM=150,∴AD=2AM=300步;故选:D.【点睛】本题考查相似三角形的应用、正方形的性质,解答本题的关键是明确题意.利用相似三角形的性质和数形结合的思想解答.10、A【解析】

首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.【详解】解:x2﹣8x+7=0,x2﹣8x=﹣7,x2﹣8x+16=﹣7+16,(x﹣4)2=9,故选:A.【点睛】本题考查了解一元二次方程--配方法.配方法的一般步骤:

(1)把常数项移到等号的右边;

(2)把二次项的系数化为1;

(3)等式两边同时加上一次项系数一半的平方.

选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.二、填空题(每小题3分,共24分)11、或【解析】

分两种情况:①当作斜边AB的垂直平分线PQ,与BC交于点D时,连接AD由PQ垂直平分线段AB,推出DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,根据AD2=AC2+CD2构建方程即可解决问题;②当作直角边的垂直平分线PQ,与斜边AB交于点D时,连接CD,根据直角三角形斜边上的中线性质求得CD.【详解】解:当作斜边AB的垂直平分线PQ,与BC交于点D时,连接AD.∵PQ垂直平分线段AB,∴DA=DB,设DA=DB=x,在Rt△ACD中,∠C=90°,AD2=AC2+CD2,∴x2=32+(1-x)2,解得x=,∴CD=BC-DB=1-=;当作直角边的垂直平分线PQ或P′Q′,都与斜边AB交于点D时,连接CD,则D是AB的中点,∴CD=AB=,综上可知,CD=或.故答案为:或.【点睛】本题考查基本作图,线段的垂直平分线的性质,勾股定理等知识,直角三角形斜边上的中线等于斜边的一半,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.12、【解析】

连接交于D,中,根据勾股定理得,,根据旋转的性质得:垂直平分为等边三角形,分别求出,根据计算即可.【详解】如图,连接交于D,如图,中,∵,∴,∵绕点A逆时针方向旋转到的位置,∴,∴垂直平分为等边三角形,∴,∴.故答案为:.【点睛】考查等腰直角三角形的性质,等边三角形的判定与性质,旋转的性质等,13、1:1【解析】试题分析:当AB:AD=1:1时,四边形MENF是正方形,理由是:∵AB:AD=1:1,AM=DM,AB=CD,∴AB=AM=DM=DC,∵∠A=∠D=90°,∴∠ABM=∠AMB=∠DMC=∠DCM=45°,∴∠BMC=90°,∵四边形ABCD是矩形,∴∠ABC=∠DCB=90°,∴∠MBC=∠MCB=45°,∴BM=CM,∵N、E、F分别是BC、BM、CM的中点,∴BE=CF,ME=MF,NF∥BM,NE∥CM,∴四边形MENF是平行四边形,∵ME=MF,∠BMC=90°,∴四边形MENF是正方形,即当AB:AD=1:1时,四边形MENF是正方形,故答案为:1:1.点睛:本题考查了矩形的性质、正方形的判定、三角形中位线定理等知识,熟练应用正方形的判定方法是解题关键.14、6【解析】∵直线y=kx+b与y=−5x+1平行,∴k=−5,∵直线y=kx+b过(2,1),∴−10+b=1,解得:b=11.∴k+b=-5+11=615、1【解析】

根据角平分线的判定定理求出∠BAD,根据直角三角形的性质计算,得到答案.【详解】解:∵DE⊥AB,DF⊥AC,DE=DF,∴∠BAD=∠CAD=∠BAC=30°,在Rt△ADE中,∠BAD=30°,∴DE=AD=1,故答案为1.【点睛】本题考查的是角平分线的判定、直角三角形的性质,掌握到角的两边距离相等的点在角的平分线上是解题的关键.16、或1.【解析】

试题分析:此题主要考查了图形的剪拼,关键是根据画出图形,要考虑全面,不要漏解.根据三角函数可以计算出BC=8,AC=4,再根据中位线的性质可得CD=AD=,CF=BF=4,DF=2,然后拼图,出现两种情况,一种是拼成一个矩形,另一种拼成一个平行四边形,进而算出周长即可.解:由题意可得:AB=4,∵∠C=30°,∴BC=8,AC=4,∵图中所示的中位线剪开,∴CD=AD=2,CF=BF=4,DF=2,如图1所示:拼成一个矩形,矩形周长为:2+2+4+2+2=8+4;如图2所示,可以拼成一个平行四边形,周长为:4+4+4+4=1,故答案为8+4或1.考点:1.图形的剪拼;2.三角形中位线定理.17、①②③【解析】

由抛物线开口方向得到a<0,由抛物线与y轴交点位置得到c>0,则可对①进行判断;利用抛物线的对称轴方程可对②进行判断;由抛物线与x轴的交点个数可对③进行判断;由于x=-1时函数值小于0,则可对④进行判断.【详解】解:∵抛物线开口向下,∴a<0,∵抛物线与y轴交点位于y轴正半轴,∴c>0,所以①正确;∵抛物线的对称轴为直线,∴b=-2a,即2a+b=0,所以②正确;∵抛物线与x轴有两个不同的交点,∴b2-4ac>0,所以③正确;∵x=-1时,y<0,∴a-b+c<0,所以④错误.故答案为:①②③.【点睛】本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.18、1.【解析】

根据菱形的对角线互相垂直平分表示出点A、点D的坐标,再根据直线解析式求出点A移动到MN上时的x的值,从而得到m的取值,由此即可求得答案.【详解】∵菱形ABCD的顶点C(-1,0),点B(0,2),∴点A的坐标为(-1,4),点D坐标为(-2,2),∵D(n,2),∴n=-2,当y=4时,-x+5=4,解得x=2,∴点A向右移动2+1=3时,点A在MN上,∴m的值为3,∴m+n=1,故答案为:1.【点睛】本题考查了一次函数图象上点的坐标特征,菱形的性质,坐标与图形变化-平移,正确把握菱形的性质、一次函数图象上点的坐标特征是解题的关键.三、解答题(共66分)19、(1)证明见解析;(2)1.【解析】

(I)根据平行四边形的性质得出AD∥BC,根据平行四边形的判定推出即可;(II)根据菱形的性质求出AE=1,AE=EC,求出AE=BE即可.【详解】(I)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∵AF=CE,∴四边形AECF是平行四边形;(II)如图:∵四边形AECF是菱形,∴AE=EC,∴∠1=∠2,∵∠BAC=90°,∴∠2+∠3=90°∠1+∠B=90°,∴∠3=∠B,∴AE=BE,∵AE=1,∴BE=1.【点睛】本题考查了平行四边形的性质,等腰三角形的性质,菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.20、(1)每天销售量是千克;(2)水果店需将每千克的售价降低1元.【解析】

(1)销售量原来销售量下降销售量,据此列式即可;(2)根据销售量每千克利润总利润列出方程求解即可.【详解】解:(1)每天的销售量是(千克).故每天销售量是千克;(2)设这种水果每斤售价降低元,根据题意得:,解得:,,当时,销售量是;当时,销售量是(斤.每天至少售出260斤,.答:水果店需将每千克的售价降低1元.【点睛】考查了一元二次方程的应用,本题考查理解题意的能力,第一问关键求出每千克的利润,求出总销售量.第二问,根据售价和销售量的关系,以利润作为等量关系列方程求解.21、(1)甲将被录取;(2)公司录取乙.【解析】

(1)由形体、口才、专业知识按照的比确定,根据加权平均数的计算方法分别计算不同权的平均数,比较即可,

(2)由面试成绩中形体占,口才占,笔试成绩中专业知识占,,根据加权平均数的计算方法分别计算不同权的平均数,比较即可.【详解】解:(1)甲的平均成绩:,乙的平均成绩:,,所以,甲将被录取;(2)甲的平均成绩:,乙的平均成绩:,,所以,公司录取乙.【点睛】本题考查的是加权平均数的实际应用,熟练掌握加权平均数是解题的关键.22、(1)平均数:260(件)中位数:240(件)众数:240(件)(2)不合理【解析】试题解析:解:(1)这15个人的平均数是:,中位数是:240,众数是240;(2)不合理,因为这15个人中只有4个人可以完成任务,大部分人都完不成任务.考点:平均数、中位数、众数点评:本题主要考查了平均数、中位数、众数.平均数、中位数、众数都反映了一组数据的集中趋势,但是平均数容易受到这组数据中的极端数数的影响,所以中位数和众数更具有代表性.23、(1)证明见解析(2)3【解析】试题分析:(1)要证明△EDM∽△FBM成立,只需要证DE∥BC即可,而根据已知条件可证明四边形BCDE是平行四边形,从而可证明相似;(2)根据相似三角形的性质得对应边成比例,然后代入数值计算即可求得线段的长.试题解析:(1)证明:∵AB="2CD",E是AB的中点,∴BE=CD,又∵AB∥CD,∴四边形BCDE是平行四边形,∴BC∥DE,BC=DE,∴△EDM∽△FBM;(2)∵BC=DE,F为BC的中点,∴BF=DE,∵△EDM∽△FBM,∴,∴BM=DB,又∵DB=9,∴BM=3.考点:1.梯形的性质;2.平行四边形的判定与性质;3.相似三角形的判定与性质.24、(1)200;(2)补图见解析;(3)12;(4)300人.【解析】

(1)由76÷38%,可得总人数;先算社科类百分比,再求小说百分比,再求对应圆心角;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论