版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省青岛即墨市2024届八年级下册数学期末复习检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,点为的平分线上的一点,于点.若,则到的距离为()A.5 B.4 C.3.5 D.32.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB∥DC,AD=BC3.如图,矩形ABCD中,对角线AC=8cm,△AOB是等边三角形,则AD的长为()cm.A.4 B.6 C.4 D.34.如图,若一次函数的图象与x轴的交于点,与y轴交于点下列结论:①关于x的方程的解为;②随x的增大而减小;③关于x的方程的解为;④关于x的不等式的解为其中所有正确的为A.①②③ B.①③ C.①②④ D.②④5.下列函数关系式中,y是x的反比例函数的是A. B. C. D.6.不等式8﹣4x≥0的解集在数轴上表示为()A.B.C.D.7.若函数的解析式为y=,则当x=2时对应的函数值是()A.4 B.3 C.2 D.08.某班名男生参加中考体育模拟测试,跑步项目成绩如下表:成绩(分)人数则该班男生成绩的中位数是()A. B. C. D.9.下列计算正确的是A. B. C. D.10.一元二次方程x(x﹣1)=0的解是()A.x=0 B.x=1 C.x=0或x=﹣1 D.x=0或x=111.下列命题:①对顶角相等;②两直线平行,同位角相等;③全等三角形对应角相等;⑤菱形是对角线互相垂直的四边形.它们的逆命题中,不成立的个数有()A.1个 B.2个 C.3个 D.4个12.一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A.(﹣5,3) B.(1,﹣3) C.(2,2) D.(5,﹣1)二、填空题(每题4分,共24分)13.气象观测小组进行活动,一号探测气球从海拔5米处出发,以1m/min速度上升,气球所在位置的海拔y(单位:m)与上升时间x(单位:min)的函数关系式为___.14.如图中的螺旋由一系列直角三角形组成,则第2019个三角形的面积为_______.15.在参加“森林重庆”的植树活动中,某班六个绿化小组植树的棵数分别是:10,1,1,10,11,1.则这组数据的众数是____________.16.如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=3,则AF的长为_.17.从沿北偏东的方向行驶到,再从沿南偏西方向行驶到,则______.18.在菱形ABCD中,对角线AC、BD交于点O,点F为BC中点,过点F作FE⊥BC于点F交BD于点E,连接CE,若∠BDC=34°,则∠ECA=_____°.三、解答题(共78分)19.(8分)如图1,在平面直角坐标系中,直线AB经过点C(a,a),且交x轴于点A(m,1),交y轴于点B(1,n),且m,n满足+(n﹣12)2=1.(1)求直线AB的解析式及C点坐标;(2)过点C作CD⊥AB交x轴于点D,请在图1中画出图形,并求D点的坐标;(3)如图2,点E(1,﹣2),点P为射线AB上一点,且∠CEP=45°,求点P的坐标.20.(8分)如图,将△ABC绕点A顺时针旋转得到△ADE(点B,C的对应点分别是D,E),当点E在BC边上时,连接BD,若∠ABC=30°,∠BDE=10°,求∠EAC.21.(8分)如图,△ABC的边AB=8,BC=5,AC=1.求BC边上的高.22.(10分)点P(-2,4)关于y轴的对称点P'在反比例函数y=(k≠0)的图象上.(1)求此反比例函数关系式;(2)当x在什么范围取值时,y是小于1的正数?23.(10分)先化简,再求值:,其中x=.24.(10分)如图,在矩形ABCD中,E是AD的中点,将△ABE沿BE折叠,点A的对应点为点G.(1)填空:如图1,当点G恰好在BC边上时,四边形ABGE的形状是___________形;(2)如图2,当点G在矩形ABCD内部时,延长BG交DC边于点F.求证:BF=AB+DF;若AD=AB,试探索线段DF与FC的数量关系.25.(12分)在矩形ABCD中,点E、F分别在AB,BC上,△DEF为等腰直角三角形,∠DEF=90°,AD+CD=10,AE=2,求AD的长.26.如图,在菱形ABCD中,过点D作DE⊥AB于点E,作DF⊥BC于点F,连接EF.求证:(1)△ADE≌△CDF;(2)∠BEF=∠BFE.
参考答案一、选择题(每题4分,共48分)1、B【解析】
如图,作DH⊥OB于H.利用角平分线的性质定理即可解决问题.【详解】如图,作DH⊥OB于H.∵OC平分∠AOB,DE⊥OA,DH⊥OB,∴DE=DH=4,故选B.【点睛】本题考查角平分线的性质定理,解题的关键是学会添加常用辅助线.2、D【解析】根据平行四边形判定定理进行判断:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意.故选D.考点:平行四边形的判定.3、C【解析】
先求得∠ACB=30°,再求出AB=4cm,由勾股定理求得AD的长.【详解】∵△AOB是等边三角形,∴∠BAC=60°,∴∠ACB=30°,∵AC=8cm,∴AB=4cm,在Rt△ABC中,cm,∵AD=BC,∴AD的长为4cm.故选:C.【点睛】本题考查的是矩形的性质,关键是根据在直角三角形中,30°的锐角所对的直角边等于斜边的一半;以及勾股定理解答.4、A【解析】
根据一次函数的性质进行分析即可.一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-,0);当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小.根据2分析函数与方程和不等式的关系.【详解】解:根据题意可知:由直线与x轴交点坐标可知关于x的方程的解为;由图象可知随x的增大而减小;由直线与y轴的交点坐标可知关于x的方程的解为;由函数图象分析出y>0时,关于x的不等式的解为所以,正确结论是:①②③.故选A.【点睛】本题考核知识点:一次函数的性质.解题关键点:结合函数的图象分析问题.5、D【解析】
根据反比例函数的定义,反比例函数的一般式是y=kx(k≠0),可以判定函数的类型.【详解】A.是一次函数,故此选项错误;B.是正比例函数,故此选项错误;C.不是反比例函数,故此选项错误;D.是反比例函数,故此选项正确。故选D.【点睛】本题考查反比例函数的定义,熟练掌握反比例函数的定义对选项进行判断是解题关键.6、C【解析】
先根据不等式的基本性质求出此不等式的解集,在数轴上表示出来,再找出符合条件的选项即可.【详解】8﹣4x≥0移项得,﹣4x≥﹣8,系数化为1得,x≤1.在数轴上表示为:故选:C.【点睛】本题考查的是解一元一次不等式及在数轴上表示不等式的解集,解答此类题目时要注意实心圆点与空心圆点的区别.正确求出不等式的解集是解此题的关键.7、A【解析】
把x=2代入函数解析式y=,即可求出答案.【详解】把x=2代入函数解析式y=得,故选A.【点睛】本题考查的是函数值的求法.将自变量的值x=2代入函数解析式并正确计算是解题的关键.8、C【解析】
将一组数据按照大小顺序排列,位于最中间的那个数或两个数的平均数就是该组数据的中位数,据此结合题意进一步加以计算即可.【详解】∵该班男生一共有18名,∴中位数为按照大小顺序排序后第9与第10名的成绩的平均数,∴该班男生成绩的中位数为:,故选:C.【点睛】本题主要考查了中位数的定义,熟练掌握相关概念是解题关键.9、B【解析】
根据二次根式的运算法则,逐一计算即可得解.【详解】A选项,,错误;B选项,,正确;C选项,,错误;D选项,,错误;故答案为B.【点睛】此题主要考查二次根式的运算,熟练掌握,即可解题.10、D【解析】试题分析:方程利用两数相乘积为0,两因式中至少有一个为0,因此可由方程x(x﹣1)=0,可得x=0或x﹣1=0,解得:x=0或x=1.故选D.考点:解一元二次方程-因式分解法11、C【解析】
分别写出各命题的逆命题:相等的角为对顶角;同位角相等,两直线平行;对应角相等,两三角形全等;对角线互相垂直的四边形为菱形;然后再分别利用举反例、平行线的判定以及菱形的判定方法依次进行判断.【详解】“对顶角相等”的逆命题为“相等的角为对顶角”,所以此逆命题为假命题;“两直线平行,同位角相等”的逆命题为“同位角相等,两直线平行”,此逆命题为真命题;“全等三角形对应角相等”的逆命题为“对应角相等的两个三角形全等”,此逆命题为假命题;“菱形的对角线互相垂直”的逆命题为“对角线互相垂直的四边形为菱形”,此命题为假命题.因此,上述逆命题中不成立的的有3个.故选:C.【点睛】本题考查了命题:判断事物的语句叫命题.正确的命题称为真命题,错误的命题称为假命题;交换命题的题设与结论得到的命题为原命题的逆命题.12、C【解析】【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>0,A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣<0,不符合题意;B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;C、把点(2,2)代入y=kx﹣1得到:k=>0,符合题意;D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,故选C.【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.二、填空题(每题4分,共24分)13、y=x+1.【解析】
直接利用原高度+上升的时间×1=海拔高度,进而得出答案.【详解】气球所在位置的海拔y(单位:m)与上升时间x(单位:min)的函数关系式为:y=x+1.故答案为:y=x+1.【点睛】此题主要考查了函数关系式,正确表示出上升的高度是解题关键.14、【解析】
根据勾股定理逐一进行计算,从中找到规律,即可得到答案.【详解】第一个三角形中,第二个三角形中,第三个三角形中,…第n个三角形中,当时,故答案为:.【点睛】本题主要考查勾股定理及三角形面积公式,掌握勾股定理,找到规律是解题的关键.15、1【解析】
众数是一组数据中出现次数最多的数据,有时众数可以不止一个.【详解】解:在这一组数据中1是出现次数最多的,故众数是1;故答案为1.16、1.【解析】
先利用直角三角形斜边中线性质求出AB,在Rt△ABF中,利用直角三角形10度角所对的直角边等于斜边的一半,求出AF即可解决问题.【详解】解:∵AF⊥BC,∴∠AFB=90°,在Rt△ABF中,D是AB的中点,DF=1,∴AB=2DF=6,又∵E是AC的中点,∴DE∥BC,∵∠ADE=10°,∴∠ABF=∠ADE=10°,∴AF=AB=1,故答案为:1.【点睛】本题考查三角形中位线性质、含10度角的直角三角形性质、直角三角形斜边上的中线性质,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.17、40【解析】
根据方位角的概念,画图正确表示出行驶的过程,再根据已知转向的角度结合三角形的内角和与外角的关系求解.【详解】如图,A沿北偏东60°的方向行驶到B,则∠BAC=90°-60°=30°,
B沿南偏西20°的方向行驶到C,则∠BCO=90°-20°=70°,
又∵∠ABC=∠BCO-∠BAC,∴∠ABC=70°-30°=40°.故答案为:40°【点睛】解答此类题需要从运动的角度,正确画出方位角,再结合三角形的内角和与外角的关系求解.18、1.【解析】
根据菱形的性质可求出∠DBC和∠BCA度数,再根据线段垂直平分线的性质可知∠ECB=∠EBC,从而得出∠ECA=∠BCA﹣∠ECB度数.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,∠BDC=∠DBC=34°.∠BCA=∠DCO=90°﹣34°=56°.∵EF垂直平分BC,∴∠ECF=∠DBC=34°.∴∠ECA=56°﹣34°=1°.故答案为1.【点睛】本题考查了菱形的性质及线段垂直平分线的性质,综合运用上述知识进行推导论证是解题的关键.三、解答题(共78分)19、(1)y=-2x+12,点C坐标(4,4);(2)画图形见解析,点D坐标(-4,1);(3)点P的坐标(,)【解析】
(1)由已知的等式可求得m、n的值,于是可得直线AB的函数解析式,把点C的坐标代入可求得a的值,由此即得答案;(2)画出图象,由CD⊥AB知可设出直线CD的解析式,再把点C代入可得CD的解析式,进一步可求D点坐标;(3)如图2,取点F(-2,8),易证明CE⊥CF且CE=CF,于是得∠PEC=45°,进一步求出直线EF的解析式,再与直线AB联立求两直线的交点坐标,即为点P.【详解】解:(1)∵+(n﹣12)2=1,∴m=6,n=12,∴A(6,1),B(1,12),设直线AB解析式为y=kx+b,则有,解得,∴直线AB解析式为y=-2x+12,∵直线AB过点C(a,a),∴a=-2a+12,∴a=4,∴点C坐标(4,4).(2)过点C作CD⊥AB交x轴于点D,如图1所示,设直线CD解析式为y=x+b′,把点C(4,4)代入得到b′=2,∴直线CD解析式为y=x+2,∴点D坐标(-4,1).(3)如图2中,取点F(-2,8),作直线EF交直线AB于P,图2∵直线EC解析式为y=x-2,直线CF解析式为y=-x+,∵×(-)=-1,∴直线CE⊥CF,∵EC=2,CF=2,∴EC=CF,∴△FCE是等腰直角三角形,∴∠FEC=45°,∵直线FE解析式为y=-5x-2,由解得,∴点P的坐标为().【点睛】本题是一次函数的综合题,综合考查了坐标系中两直线的垂直问题、两条直线的交点问题和求特殊角度下的直线解析式,并综合了勾股定理和等腰直角三角形的判定和性质,解题的关键是熟知坐标系中两直线垂直满足,一次函数的交点与对应方程组的解的关系.其中,第(3)小题是本题的难点,寻找到点F(-2,8)是解题的突破口.20、∠EAC=100°.【解析】
由旋转可得,△ABC≌△ADE,进而得出∠ABC=∠ADE=30°,AD=AB,进而得到∠ADB=40°=∠ABD,∠BAD=100°,再根据∠BAC=∠DAE,即可得到∠EAC=∠DAB=100°.【详解】由旋转可得,△ABC≌△ADE,∴∠ABC=∠ADE=30°,AD=AB,∵∠BDE=10°,∴∠ADB=40°=∠ABD,∴∠BAD=100°,又∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠EAC=∠DAB=100°.【点睛】本题主要考查了旋转的性质,解题时注意:旋转前、后的图形全等.21、BC边上的高AD=.【解析】
作AD⊥BC于D,根据勾股定理列方程求出CD,根据勾股定理计算即可.【详解】作AD⊥BC于D,由勾股定理得,AD2=AB2-BD2,AD2=AC2-CD2,∴AB2-BD2=AC2-CD2,即82-(5-CD)2=12-CD2,解得,CD=1,则BC边上的高AD=.【点睛】考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.22、(1)y=;(2)x>1;【解析】
(1)先求出点P(-2,4)关于y轴的对称点P′的坐标,把点P′的坐标代入反比例函数y=(k≠0)即可求出k的值,进而得出反比例函数的解析式;(2)根据y是小于1的正数列出关于x的不等式组,求出x的取值范围即可.【详解】(1)∵点P(-2,4)与点P′关于y轴对称,∴P′(2,4),∵点P′在反比例函数y=(k≠0)的图象上,∴4=,解得k=1,∴反比例函数的关系式为:y=;(2)∵y是小于1的正数,∴0<<1,解得x>1.【点睛】此题考查待定系数法求反比例函数解析式,反比例函数的性质,关于x轴、y轴对称的点的坐标,解题关键在于把已知点代入解析式23、,.【解析】
根据分式的运算法则把所给的分式化为最简,再将x的值代入计算即可求值.【详解】===当x=时,原式=.【点睛】本题考查了分式的化简求值,根据分式的运算法则把所给的分式化为最简是解决问题的关键.24、正方形【解析】分析:(1)如图1,当点G恰好在BC边上时,四边形ABGE的形状是正方形,理由为:由折叠得到两对边相等,三个角为直角,确定出四边形ABEG为矩形,再由矩形对边相等,等量代换得到四条边相等,即邻边相等,即可得证;(2)①如图2,连接EF,由ABCD为矩形,得到两组对边相等,四个角为直角,再由E为AD中点,得到AE=DE,由折叠的性质得到BG=AB,EG=AE=ED,且∠EGB=∠A=90°,利用HL得到直角三角形EFG与直角△EDF全等,利用全等三角形对应边相等得到DF=FG,由BF=BG+GF,等量代换即可得证;②CF=DF,理由为:不妨假设AB=DC=a,DF=b,表示出AD=BC,由①得:BF=AB+DF,进而表示出BF,CF,在直角△BCF中,利用勾股定理列出关系式,整理得到a=2b,由CD-DF=FC,代换即可得证.详解:(1)正方形;(2)①如图2,连结EF,在矩形ABCD中,AB=DC,AD=BC,∠A=∠C=∠D=90°,∵E是AD的中点,∴AE=DE,∵△ABE沿BE折叠后得到△GBE,∴BG=AB,EG=AE=ED,∠A=∠BGE=90°∴∠EGF=∠D=90°,在Rt△EGF和Rt△EDF中,∵EG=ED,EF=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 分包采购监督合同(2篇)
- 2025技术项目开发委托合同
- 2024年度四川省公共营养师之四级营养师全真模拟考试试卷A卷含答案
- 辽宁某离心压缩机项目可行性研究报告
- 2024年照明工程行业市场分析报告
- 拓展培训行业市场深度分析及投资策略研究报告
- 叶黄素颗粒项目可行性研究报告
- 2023-2029年中国物联网智能交通行业发展前景预测及投资战略咨询报告
- 中国弯头模具项目投资可行性研究报告
- 年产100万只塑料托盘建设项目可行性研究报告
- 2024年全国《国防和兵役》理论知识竞赛试题库与答案
- 企业知识产权保护策略及实施方法研究报告
- 2024年07月11026经济学(本)期末试题答案
- 2024年中小企业股权融资合同3篇
- 2024年01月11289中国当代文学专题期末试题答案
- 2024年秋季生物教研组工作计划
- 2024年云南高中学业水平合格考历史试卷真题(含答案详解)
- 2025年董事长年会发言稿范文
- 医院廉洁购销合同
- 车间设备线路安装方案
- 《古兰》中文译文版
评论
0/150
提交评论