2024年河南省周口西华县联考数学八年级下册期末联考试题含解析_第1页
2024年河南省周口西华县联考数学八年级下册期末联考试题含解析_第2页
2024年河南省周口西华县联考数学八年级下册期末联考试题含解析_第3页
2024年河南省周口西华县联考数学八年级下册期末联考试题含解析_第4页
2024年河南省周口西华县联考数学八年级下册期末联考试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年河南省周口西华县联考数学八年级下册期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图所示,一次函数y1=kx+4与y2=x+b的图象交于点A.则下列结论中错误的是()A.K<0,b>0 B.2k+4=2+bC.y1=kx+4的图象与y轴交于点(0,4) D.当x<2时,y1>y22.如图,在边长为的正方形中,点为对角线上一动点,于于,则的最小值为()A. B. C. D.3.直角三角形中,两条直角边的边长分别为6和8,则斜边上的中线长是()A.10 B.8 C.6 D.54.如图所示,正方形纸片ABCD中,对角线AC,BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB,AC于点E,G,连接GF,给出下列结论:①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,则正方形ABCD的面积是6+4,其中正确的结论个数有()A.2个 B.4个 C.3个 D.5个5.一次函数y=ax+b,b>0,且y随x的增大而减小,则其图象可能是()A. B. C. D.6.反比例函数经过点(1,),则的值为()A.3 B. C. D.7.关于的一元二次方程有两个不相等的实数根,则的取值范围是()A. B. C.且 D.且8.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为()A.2 B.2.2 C.2.4 D.2.59.如图,以正方形的边为一边向内作等边,连结,则的度数为()A. B. C. D.10.已知一组数据:9,8,8,6,9,5,7,则这组数据的中位数是()A.6B.7C.8D.911.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形 B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形 D.当AC=BD时,它是正方形12.甲、乙两名同学在初二下学期数学6章书的单元测试中,平均成绩都是86分,方差分别是,,则成绩比较稳定的是()A.甲 B.乙 C.甲和乙一样 D.无法确定二、填空题(每题4分,共24分)13.某小区20户家庭的日用电量(单位:千瓦时)统计如下:这20户家庭日用电量的众数、中位数分别是(

)A.6,6.5 B.6,7 C.6,7.5 D.7,7.514.化简的结果是_______.15.甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:S甲2=2,S乙2=1.5,则射击成绩较稳定的是(填“甲”或“乙“).16.在某次数学测验中,班长将全班50名同学的成绩(得分为整数)绘制成频数分布直方图(如图),从左到右的小长方形高的比为0.6:2:4:2.2:1.2,则得分在70.5到80.5之间的人数为________.17.如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C(0,4),D为OA的中点,P为BC边上一点.若△POD为等腰三角形,则所有满足条件的点P的坐标为.18.各内角所对边的长分别为、、,那么角的度数是________。三、解答题(共78分)19.(8分)计算:化简:20.(8分)为了丰富校园文化生活,提高学生的综合素质,促进中学生全面发展,学校开展了多种社团活动.小明喜欢的社团有:合唱社团、足球社团、书法社团、科技社团(分别用字母A,B,C,D依次表示这四个社团),并把这四个字母分别写在四张完全相同的不透明的卡片的正面上,然后将这四张卡片背面朝上洗匀后放在桌面上.(1)小明从中随机抽取一张卡片是足球社团B的概率是.(2)小明先从中随机抽取一张卡片,记录下卡片上的字母后不放回,再从剩余的卡片中随机抽取一张卡片,记录下卡片上的字母.请你用列表法或画树状图法求出小明两次抽取的卡片中有一张是科技社团D的概率.21.(8分)如图,直线与轴交于点,点是该直线上一点,满足.(1)求点的坐标;(2)若点是直线上另外一点,满足,且四边形是平行四边形,试画出符合要求的大致图形,并求出点的坐标.22.(10分)温度的变化是人们经常谈论的话题,请根据下图解决下列问题.(1)这一天的最高温度是多少?是在几时到达的?(2)这一天的温差是多少?从最低温度到最高温度经过多长时间?(3)在什么时间范围内温度在上升?在什么时间范围内温度在下降?23.(10分)阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如,这样的式子,其实我们还可以将其进一步化简:(一);(二);(三).以上这种化简的方法叫分母有理化.(1)请用不同的方法化简:①参照(二)式化简=__________.②参照(三)式化简=_____________(2)化简:.24.(10分)如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF(1)求证:AE=CF;(2)若AB=6,∠COD=60°,求矩形ABCD的面积.25.(12分)今年水果大丰收,A,B两个水果基地分别收获水果380件、320件,现需把这些水果全部运往甲、乙两销售点,从A基地运往甲、乙两销售点的费用分别为每件40元和20元,从B基地运往甲、乙两销售点的费用分别为每件15元和30元,现甲销售点需要水果400件,乙销售点需要水果300件.(1)设从A基地运往甲销售点水果x件,总运费为W元,请用含x的代数式表示W,并写出x的取值范围;(2)若总运费不超过18300元,且A地运往甲销售点的水果不低于200件,试确定运费最低的运输方案,并求出最低运费.26.如图,矩形的对角线垂直平分线与边、分别交于点,求证:四边形为菱形.

参考答案一、选择题(每题4分,共48分)1、A【解析】

利用一次函数的性质结合函数的图象逐项分析后即可确定正确的选项.【详解】解:∵y1=kx+4在第一、二、四象限,y2=x+b的图象交于y轴的负半轴,∴k<0,b<0故A错误;∵A点为两直线的交点,∴2k+4=2+b,故B正确;当x=0时y1=kx+4=4,∴y1=kx+4的图象与y轴交于点(0,4),故C正确;由函数图象可知当x<2时,直线y2的图象在y1的下方,∴y1>y2,故D正确;故选:A.【点睛】本题考查两直线的交点问题,能够从函数图象中得出相应的信息是解题的关键.注意数形结合.2、B【解析】

由正方形的性质得BC=CD=4,∠C=90°,∠CBD=∠CDB=45°,再证出四边形四边形MECF是矩形,得出CE=MF=DF,即当点M为BD的中点时EF的值最小.【详解】在边长为4cm的正方形ABCD中,BC=CD=4∠C=90°,∠CBD=∠CDB=45°于于F∠MEC=∠MFC=∠MFD=90°四边形MECF是矩形,△MDF为等腰三角形CE=MF=DF设DF=x,则CE=xCF=CD-DF=4-x在RT△CEF中,由勾股定理得==,当且仅当x-2=0时,即x=2时,有最小值0当且仅当x-2=0时,即x=2时,有最小值故选B。【点睛】本题考查正方形的性质,找好点M的位置是解题关键.3、D【解析】

如图,根据勾股定理求出AB,根据直角三角形斜边上中线求出CD=12AB【详解】解:如图,∵∠ACB=90°,AC=6,BC=8,由勾股定理得:AB=AC2+∵CD是△ABC中线,∴CD=12AB=12×故选D.【点睛】本题主要考查对勾股定理,直角三角形斜边上的中线等知识点的理解和掌握,能推出CD=12AB4、C【解析】

根据四边形ABCD为正方形,以及折叠的性质,可以直接得到∠ADG的角度,以及AE=FE,在△BEF中,EF<BE,可以得到2AE<AB,结合三角函数的定义对②作出判断;在△AGD和△OGD中高相等,底不同,可以直接判断其大小,而四边形AEFG是菱形的判定需证得AE=EF=GF=AG;要计算OG和BE的关系,我们需利用到中间量EF,即四边形AEFG的边长,可以转化出BE和OG的关系;当已知△OGF的面积时,根据菱形的性质,可以求得OG的长,进而求出BE的长度,而AE的长度与GF相同,GF可由勾股定理得出,进而求出AB的长度,正方形ABCD的面积也出来了.【详解】∵四边形ABCD是正方形,∴∠GAD=∠ADO=45°.由折叠的性质可得:∠ADG=∠ADO=22.5°,故①正确;∵由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB,∴>2.故②错误;∵∠AOB=90°,∴AG=FG>OG.∵△AGD与△OGD同高,∴S△AGD>S△OGD.故③错误;∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE.∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF.∵AE=EF,∴AE=GF.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,故④正确;∵四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴EF=GF=OG,∴BE=EF=×OG=2OG.故⑤正确;∵四边形AEFG是菱形,∴AB∥GF,AB=GF.∵∠BAO=45°,∠GOF=90°,∴△OGF是等腰直角三角形.∵S△OGF=1,∴OG=1,解得OG=,∴BE=2OG=2,GF=,∴AE=GF=2,∴AB=BE+AE=2+2,∴S四边形ABCD=AB=(2+2)=12+8.故⑥错误.∴其中正确结论的序号是①④⑤,共3个.故选C.【点睛】此题考查正方形的性质,折叠的性质,菱形的性质,三角函数,解题关键在于掌握各性质定理5、C【解析】

根据题意,判断a<0,b>0,由一次函数图象的性质可得到直线的大概位置.【详解】因为,一次函数y=ax+b,b>0,且y随x的增大而减小,所以,a<0,所以,直线经过第一、二、四象限.故选:C【点睛】本题考核知识点:一次函数的图象.解题关键点:熟记一次函数的图象.6、B【解析】

此题只需将点的坐标代入反比例函数解析式即可确定k的值.【详解】把已知点的坐标代入解析式可得,k=1×(-1)=-1.故选:B.【点睛】本题主要考查了用待定系数法求反比例函数的解析式,.7、D【解析】

根据方程有两个不相等的实数根,则,结合一元二次方程的定义,即可求出m的取值范围.【详解】解:∵一元二次方程有两个不相等的实数根,∴解得:,∵,∴的取值范围是:且;故选:D.【点睛】总结一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8、C【解析】

根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.【详解】连接AP,∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°,又∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP,∵AP的最小值即为直角三角形ABC斜边上的高,即2.4,∴EF的最小值为2.4,故选:C.【点睛】本题考查了矩形的性质和判定,勾股定理的逆定理,直角三角形的性质的应用,要能够把要求的线段的最小值转化为便于求的最小值得线段是解此题的关键.9、C【解析】

在正方形ABCD中,△ABE是等边三角形,可求出∠AEB、∠DAE的大小以及推断出AD=AE,从而可求出∠AED,再根据角的和差关系求出∠BED的度数.【详解】解:在正方形ABCD中,∠ABC=90°,AB=BC.∵△ABE是等边三角形,∴∠AEB=∠BAE=60°,AE=AB,∴∠DAE=90°−60°=30°,AD=AE,∴∠AED=∠ADE=(180°−30°)=75°,∴∠BED=∠AEB+∠AED=60°+75°=135°.故选:C.【点睛】本题考查了正方形的性质、等边三角形的性质.根据正方形和等边三角形的性质推知AD=AE是解题的关键.10、C【解析】

根据这组数据是从大到小排列的,找出最中间的数即可.【详解】解:∵原数据从大到小排列是:9,9,8,8,7,6,5,∴处于最中间的数是8,∴这组数据的中位数是8.故选C.【点睛】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)即可.11、D【解析】

直接利用特殊平行四边形的判定逐一进行判断即可【详解】有一组邻边相等的平行四边形是菱形,故A正确对角线互相垂直的平行四边形是菱形,故B正确有一个角是直角的平行四边形是矩形,故C正确对角线垂直且相等的平行四边形是正方形,故D错误本题选择不正确的,故选D【点睛】本题主要考查平行四边形性质、矩形的判定定理、正方形判定定理、菱形判定定理,基础知识扎实是解题关键12、A【解析】

方差决定一组数据的稳定性,方差大的稳定性差,方差小的稳定好.【详解】∵,∴∴甲同学的成绩比较稳定故选:A.【点睛】本题考查了方差与稳定性的关系,熟知方差小,稳定性好是解题的关键.二、填空题(每题4分,共24分)13、A【解析】【分析】结合统计表数据,根据众数和中位数的定义可以求出结果.【详解】从统计表中看出,6出现次数最多,故众数是6;第10和11户用电量的平均数是中位数.即:故选:A【点睛】本题考核知识点:众数和中位数.解题关键点:理解众数和中位数的意义.14、4【解析】

根据算术平方根的定义解答即可.【详解】=4.故答案为:4.【点睛】本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.15、乙【解析】

解:∵S甲2=2,S乙2=1.5,∴S甲2>S乙2,∴乙的射击成绩较稳定.故答案为乙.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用s2来表示,计算公式是:s2=[(x1﹣x¯)2+(x2﹣x¯)2+…+(xn﹣x¯)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.16、20【解析】

所有小长方形高的比为0.6:2:4:2.2:1.2,可以求出得分在70.5到80.5之间的人数的小长方形的高占总高的比,进而求出得分在70.5到80.5之间的人数.【详解】解:人

故答案为:20【点睛】考查频数分布直方图的制作特点以及反映数据之间的关系,理解各个小长方形的高表示的实际意义,用所占比去乘以总人数就得出相应的人数.17、(2.5,4)或(3,4)或(2,4)或(8,4).【解析】试题解析:∵四边形OABC是矩形,∴∠OCB=90°,OC=4,BC=OA=10,∵D为OA的中点,∴OD=AD=5,①当PO=PD时,点P在OD得垂直平分线上,∴点P的坐标为:(2.5,4);②当OP=OD时,如图1所示:则OP=OD=5,PC=52∴点P的坐标为:(3,4);③当DP=DO时,作PE⊥OA于E,则∠PED=90°,DE=52分两种情况:当E在D的左侧时,如图2所示:OE=5-3=2,∴点P的坐标为:(2,4);当E在D的右侧时,如图3所示:OE=5+3=8,∴点P的坐标为:(8,4);综上所述:点P的坐标为:(2.5,4),或(3,4),或(2,4),或(8,4)考点:1.矩形的性质;2.坐标与图形性质;3.等腰三角形的判定;4.勾股定理.18、【解析】

根据勾股定理的逆定理判断即可.【详解】∵△ABC各内角A、B、C所对边的长分别为13、12、5,∴52+122=132,∴∠A=90°,故答案为:90°【点睛】本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键.三、解答题(共78分)19、;【解析】

(1)按顺序先分别算术平方根定义,零指数幂、负整数指数幂法则计算,然后再按运算顺序进行计算即可;(2)原式通分并利用同分母分式的减法法则计算即可求出值.【详解】原式==;原式==.【点睛】本题考查了实数的运算、异分母分式的加减运算,涉及了算术平方根、负指数幂、零指数幂的运算等,熟练掌握各运算的运算法则是解题的关键.20、(1);(2)见解析,.【解析】

(1)直接根据概率公式求解;(2)利用列表法展示所有12种等可能性结果,再找出小明两次抽取的卡片中有一张是科技社团D的结果数,然后根据概率公式求解.【详解】(1)小明从中随机抽取一张卡片是足球社团B的概率=;(2)列表如下:ABCDA(B,A)(C,A)(D,A)B(A,B)(C,B)(D,B)C(A,C)(B,C)(D,C)D(A,D)(B,D)(C,D)由表可知共有12种等可能结果,小明两次抽取的卡片中有一张是科技社团D的结果数为6种,所以小明两次抽取的卡片中有一张是科技社团D的概率为.【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率21、(1)点坐标为;(2)点.【解析】

(1)先由直线y=-2x+10与x轴交于点A,求出点A坐标为(5,0),所以OA=5;再设点B坐标为(m,n),根据B是直线y=-2x+10上一点,及OB=OA,列出关于m,n的方程组,解方程组即可;(2)由于四边形OBCD是平行四边形,根据平行四边形的对边平行且相等得出BC∥OD,BC=OD,再由AB=BC,得出AB=OD,根据一组对边平行且相等的四边形是平行四边形证明出四边形OABD是平行四边形,则BD∥OA且BD=OA=5,由平移的性质即可求出点D的坐标.【详解】(1)由已知,点坐标为,所以.设点坐标为,因为是直线上一点∴又,∴解得或(与点重合,舍去)∴点坐标为.(2)符合要求的大致图形如图所示。∵平行四边形∴且,∵∴,∴四边形是平行四边形∴且,∴点.【点睛】本题考查了一次函数的综合题,涉及到一次函数图象上点的坐标的求法,二元二次方程组的解法,平行四边形的性质与判定,利用了方程思想及数形结合的思想,(2)中根据平行四边形的性质与判定证明出四边形OABD是平行四边形是解题的关键.22、(1)这一天的最高温度是37℃,是在15时到达的;(2)温差为,经过的时间为时;(3)从3时到15时温度在上升,在0时到3时、15时到24时温度在下降.【解析】

(1)观察图象,可知最高温度为37℃,时间为15时;(2)由(1)中得出的最高温度-最低温度即可求出温差,也可求得经过的时间;(3)观察图象可求解.【详解】解:(1)根据图像可以看出:这一天的最高温度是37℃,,是在15时到达的;(2)∵最高温是15时37℃,最低温是3时23℃,∴温差为:,则经过的时间为::(时);(3)观察图像可知:从3时到15时温度在上升,在0时到3时、15时到24时温度在下降.【点睛】本题考查了函数的图象,属于基础题,要求同学们具备一定的观察图象能力,能从图象中获取解题需要的信息.23、见解析.【解析】

(1)原式各项仿照题目中的分母有理化的方法计算即可得到结果;(2)原式各项分母有理化,计算即可.【详解】解:(1)①;

②;

(2)原式故答案为:(1)①;②【点睛】此题主要考查了二次根式的有理化,解答此题要认真阅读前面的分析,根据题目的要求选择合适的方法解题.24、【解析】

(1)由矩形的性质得出OA=OC,OB=OD,AC=BD,∠ABC=90°,证出OE=OF,由SAS证明△AOE≌△COF,即可得出AE=CF;(2)证出△AOB是等边三角形,得出OA=AB=6,AC=2OA=12,在Rt△ABC中,由勾股定理求出BC的长,即可得出矩形ABCD的面积.【详解】(1)证明:∵四边形ABCD是矩形,∴OA=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论