版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省秦皇岛抚宁区台营学区2024届八年级下册数学期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,▱ABCD的对角线AC,BD交于点O,E为AB的中点,G为BC延长线上一点,射线EO与∠ACG的角平分线交于点F,若AC=5,BC=6,则线段EF的长为()A.5 B. C.6 D.72.已知点P(1,-3)在反比例函数的图象上,则的值是A.3 B.-3 C. D.3.若关于x的不等式组的整数解有3个,则a的取值范围是()A.3<a≤4 B.2<a≤3 C.2≤a<3 D.3≤a<44.如图,正方形ABCD的边长为3,对角线AC、BD相交于点O,将AC向两个方向延长,分别至点E和点F,且AE=CF=3,则四边形BEDF的周长为()A.20 B.24 C.12 D.125.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1 B.4S2 C.4S2+S3 D.3S1+4S36.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或177.11名同学参加数学竞赛初赛,他们的等分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的()A.平均数B.中位数C.众数D.方差8.下列图形中,绕某个点旋转180°能与自身重合的图形有()(1)正方形;(2)等边三角形;(3)矩形;(4)直角;(5)平行四边形.A.5个 B.4个 C.3个 D.2个9.点M(-2,3)关于x轴对称点的坐标为A.(-2,-3)B.(2,-3)C.(-3,-2)D.(2,3)10.在△ABC中,AB=AC=10,BD是AC边上的高,DC=4,则BD等于()A.2 B.4 C.6 D.8二、填空题(每小题3分,共24分)11.如图,菱形ABCD的周长为20,对角线AC与BC相交于点O,AC=8,则BD=________.12.若关于x的一元二次方程x²-2x+c=0没有实数根.则实数c取值范围是________13.已知实数a在数轴上的位置如图所示,化简:+|a﹣1|=_____.14.如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点E的坐标为(0,2).点F(x,0)在边AB上运动,若过点E、F的直线将矩形ABCD的周长分成2:1两部分,则x的值为__.15.在平面直角坐标系中,已知一次函数的图像经过,两点,若,则.(填”>”,”<”或”=”)16.如图,BD是矩形ABCD的一条对角线,点E、F分别是BD、BC的中点,若AB=8,BC=6,则AE+EF的长为_____.17.已知,,则的值为__________.18.如图,四边形OABC是平行四边形,对角线OB在y轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线y1=和y2=的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:①②阴影部分面积是(k1﹣k2)③当∠AOC=90°时,|k1|=|k2|;④若四边形OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是_____.三、解答题(共66分)19.(10分)已知四边形ABCD是菱形(四条边都相等的平行四边形).AB=4,∠ABC=60°,∠EAF的两边分别与边BC,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系为:.(2)如图2,当点E是线段CB上任意一点时(点E不与B,C重合),求证:BE=CF;(3)求△AEF周长的最小值.20.(6分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率50.26180.36714880.16合计1(1)统计表中的________,________,________;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.21.(6分)某校为了加强学生的安全意识,组织学生参加安全知识竞赛,并从中抽取了部分学生的成绩(得分均为整数,满分100分)进行统计,绘制了两幅尚不完整的统计图如图所示,根据统计图中的信息解答下列问题:(1)若组的频数比组小,则频数分布直方图中________,________;(2)扇形统计图中________,并补全频数分布直方图;(3)若成绩在分以上为优秀,全校共有名学生,请估计成绩优秀的学生有多少名?22.(8分)在▱ABCD中,对角线AC、BD相交于O,EF过点O,连接AF、CE.(1)求证:△BFO≌△DEO;(2)若AF⊥BC,试判断四边形AFCE的形状,并加以证明;(3)若在(2)的条件下再添加EF平分∠AEC,试判断四边形AFCE的形状,无需说明理由.23.(8分)已知正方形与正方形(点C、E、F、G按顺时针排列),是的中点,连接,.(1)如图1,点在上,点在的延长线上,求证:=ME,⊥.ME简析:由是的中点,AD∥EF,不妨延长EM交AD于点N,从而构造出一对全等的三角形,即≌.由全等三角形性质,易证△DNE是三角形,进而得出结论.(2)如图2,在的延长线上,点在上,(1)中结论是否成立?若成立,请证明你的结论;若不成立,请说明理由.(3)当AB=5,CE=3时,正方形的顶点C、E、F、G按顺时针排列.若点在直线CD上,则DM=;若点E在直线BC上,则DM=.24.(8分)已知一次函数的图象经过(2,5)和(﹣1,﹣1)两点.(1)求这个一次函数的解析式;(2)在给定的直角坐标系xOy中画出这个一次函数的图象,并指出当x增大时,y如何变化?25.(10分)先化简再求值:(x+y)2﹣x(x+y),其中x=2,y=﹣1.26.(10分)某种商品的定价为每件20元,商场为了促销,决定如果购买5件以上,则超过5件的部分打7折.(1)求购买这种商品的货款y(元)与购买数量x(件)之间的函数关系;(2)当x=3,x=6时,货款分别为多少元?
参考答案一、选择题(每小题3分,共30分)1、B【解析】
只要证明OF=OC,再利用三角形的中位线定理求出EO即可解决问题.【详解】解:∵四边形ABCD是平行四边形,∴OA=OC=,∵AE=EB,∴EF∥BC,OE=BC=3,∴∠F=∠FCG,∵∠FCG=∠FCO,∴∠F=∠FCO,∴OF=OC=,∴EF=EO+OF=,故选B.【点睛】本题考查平行四边形的性质、三角形的中位线定理、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2、B【解析】根据点在曲线上,点的坐标满足方程的关系,将P(1,-1)代入,得,解得k=-1.故选B.3、B【解析】解第一个不等式可得x<a+1,因关于x的不等式组有解,即1≤x<a+1,又因不等式组的整数解有3个,可得3<a+1≤4,即可得2<a≤3,故选B.点睛:本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4、D【解析】
根据正方形的性质,可知其对角线互相平分且垂直;由正方形的边长,可求得其对角线长;再由已知AE=CF=3,可得OE=OF,从而四边形为菱形;由勾股定理求得该菱形的一条边,再乘以4即可求得四边形BEDF的周长.【详解】∵四边形ABCD为正方形∴AC⊥BD∵正方形ABCD的边长为3,∴AC=BD==6∴OA=OB=OC=OD=3∵AE=CF=3∴OE=OF=6∴四边形BEDF为菱形∴BE=则四边形BEDF的周长为4×3.故选D.【点睛】本题考查了正方形的性质、对角线互相垂直平分的四边形是菱形及勾股定理的应用,具有一定的综合性.5、A【解析】
设等腰直角三角形的直角边长为a,中间小正方形的边长为b,则另两个直角三角形的边长分别为a-b,a+b,∴S1=12a平行四边形的面积=2S1+2S2+S3=a故答案选A.考点:直角三角形的面积.6、A【解析】试题分析:当3为腰时,则3+3=6<7,不能构成三角形,则等腰三角形的腰长为7,底为3,则周长为:7+7+3=17.考点:等腰三角形的性质7、B【解析】试题分析:由于总共有11个人,且他们的分数互不相同,第6的成绩是中位数,要判断是否进入前6名,知道中位数即可.故答案选B.考点:中位数.8、C【解析】
根据中心对称的概念对各小题分析判断,然后利用排除法求解.【详解】(1)正方形绕中心旋转能与自身重合;(2)等边三角形不能绕某点旋转与自身重合;(3)矩形绕中心旋转能与自身重合;(4)直角不能绕某个点旋转能与自身重合;(5)平行四边形绕中心旋转能与自身重合;综上所述,绕某个点旋转能与自身重合的图形有(1)(3)(5)共3个.故选:.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转后两部分重合.9、A【解析】两点关于x轴对称,那么让横坐标不变,纵坐标互为相反数即可.解:∵3的相反数是-3,
∴点M(-2,3)关于x轴对称点的坐标为(-2,-3),
故答案为A点评:考查两点关于x轴对称的坐标的特点:横坐标不变,纵坐标互为相反数10、D【解析】
求出AD,在Rt△BDA中,根据勾股定理求出BD即可.【详解】∵AB=AC=10,CD=4,∴AD=10-4=6,∵BD是AC边上的高,∴∠BDA=90°,在Rt△BDA中由勾股定理得:,故选:D.【点睛】本题考查了勾股定理的应用,主要考查学生能否正确运用勾股定理进行计算,注意:在直角三角形中,两直角边的平方和等于斜边的平方.二、填空题(每小题3分,共24分)11、1【解析】分析:根据菱形的四条边都相等可得AB=5,根据菱形的两条对角线互相垂直且平分可得AC⊥BD,AO=AC=4,BO=DO,再利用勾股定理计算出BO长,进而可得答案.详解:∵四边形ABCD是菱形,∴AC⊥BD,AO=,AC=4,BO=DO,AD=AB=DC=BC,∵菱形ABCD的周长为20,∴AB=5,∴BO==3,∴DO=3,∴DB=1,故答案为:1.点睛:此题主要考查了菱形的性质,关键是掌握菱形的性质
①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.12、【解析】
利用判别式的意义得到,然后解不等式即可.【详解】解:根据题意得:,解得:,故答案为:【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.13、1﹣2a.【解析】
利用数轴上a的位置,进而得出a和a-1的取值范围,进而化简即可.【详解】由数轴可得:﹣1<a<0,则+|a﹣1|=﹣a+1﹣a=1﹣2a.故答案为1﹣2a.【点睛】此题主要考查了二次根式的性质与化简,绝对值得意义,正确化简二次根式是解题关键.14、或﹣.【解析】
试题分析:当点F在OB上时,设EF交CD于点P,可求点P的坐标为(,1).则AF+AD+DP=3+x,CP+BC+BF=3﹣x,由题意可得:3+x=2(3﹣x),解得:x=.由对称性可求当点F在OA上时,x=﹣,故满足题意的x的值为或﹣.故答案是或﹣.【点睛】考点:动点问题.15、.【解析】试题分析:一次函数的增减性有两种情况:①当时,函数的值随x的值增大而增大;②当时,函数y的值随x的值增大而减小.由题意得,函数的,故y的值随x的值增大而增大.∵,∴.考点:一次函数图象与系数的关系.16、8【解析】
先根据三角形中位线定理得到EF的长,再根据直角三角形斜边上中线的性质,即可得到AE的长,进而得出计算结果.【详解】∵点E,F分别是BD,DC的中点,∴FE是△BCD的中位线,∴EF=BC=3,∵∠BAD=90°,AD=BC=6,AB=8,∴BD=10,又∵E是BD的中点,∴Rt△ABD中,AE=BD=5,∴AE+EF=5+3=8,故答案为:8【点睛】本题主要考查了矩形的性质以及三角形中位线定理的运用,解题时注意:在直角三角形中,斜边上的中线等于斜边的一半;三角形的中位线平行于第三边,并且等于第三边的一半.17、【解析】
由,,计算可得a+b=4,ab=1,再把因式分解可得ab(a+b),整体代入求值即可.【详解】∵,,∴a+b=4,ab=1∴=ab(a+b)=4.故答案为:4.【点睛】本题考查了因式分解的应用,正确把进行因式分解是解决问题的关键.18、①②④.【解析】
作AE⊥y轴于点E,CF⊥y轴于点F,根据平行四边形的性质得S△AOB=S△COB,利用三角形面积公式得到AE=CF,则有OM=ON,再利用反比例函数k的几何意义和三角形面积公式得到S△AOM=|k1|=OM•AM,S△CON=|k2|=ON•CN,所以有;由S△AOM=|k1|,S△CON=|k2|,得到S阴影=S△AOM+S△CON=(|k1|+|k2|)=(k1-k2);当∠AOC=90°,得到四边形OABC是矩形,由于不能确定OA与OC相等,则不能判断△AOM≌△CNO,所以不能判断AM=CN,则不能确定|k1|=|k2|;若OABC是菱形,根据菱形的性质得OA=OC,可判断Rt△AOM≌Rt△CNO,则AM=CN,所以|k1|=|k2|,即k1=-k2,根据反比例函数的性质得两双曲线既关于x轴对称,也关于y轴对称.【详解】作AE⊥y轴于E,CF⊥y轴于F,如图,∵四边形OABC是平行四边形,∴S△AOB=S△COB,∴AE=CF,∴OM=ON,∵S△AOM=|k1|=OM•AM,S△CON=|k2|=ON•CN,∴,故①正确;∵S△AOM=|k1|,S△CON=|k2|,∴S阴影部分=S△AOM+S△CON=(|k1|+|k2|),而k1>0,k2<0,∴S阴影部分=(k1-k2),故②正确;当∠AOC=90°,∴四边形OABC是矩形,∴不能确定OA与OC相等,而OM=ON,∴不能判断△AOM≌△CNO,∴不能判断AM=CN,∴不能确定|k1|=|k2|,故③错误;若OABC是菱形,则OA=OC,而OM=ON,∴Rt△AOM≌Rt△CNO,∴AM=CN,∴|k1|=|k2|,∴k1=-k2,∴两双曲线既关于x轴对称,也关于y轴对称,故④正确,故答案为:①②④.【点睛】本题考查了反比例函数的综合题,涉及了反比例函数的图象、反比例函数k的几何意义、平行四边形的性质、矩形的性质和菱形的性质等,熟练掌握各相关知识是解题的关键.三、解答题(共66分)19、(1)AE=EF=AF;(2)详见解析;(3)6.【解析】
(1)结论AE=EF=AF.只要证明AE=AF即可证明△AEF是等边三角形;(2)欲证明BE=CF,只要证明△BAE≌△CAF即可;(3)根据垂线段最短可知;当AE⊥BC时,△AEF的周长最小;【详解】(1)AE=EF=AF.理由:如图1中,连接AC,∵四边形ABCD是菱形,∠B=60°,∴AB=BC=CD=AD,∠B=∠D=60°,∴△ABC,△ADC是等边三角形,∴∠BAC=∠DAC=60°∵BE=EC,∴∠BAE=∠CAE=30°,AE⊥BC,∵∠EAF=60°,∴∠CAF=∠DAF=30°,∴AF⊥CD,∴AE=AF(菱形的高相等)∴△AEF是等边三角形,∴AE=EF=AF.故答案为AE=EF=AF;(2)证明:如图2,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAF,在△BAE和△CAF中,∴△BAE≌△CAF(ASA)∴BE=CF.(3)由(1)可知△AEF是等边三角形,∴当AE⊥BC时,AE的长最小,即△AEF的周长最小,∵AE=EF=AF=2,∴△AEF的周长为6.【点睛】本题考查四边形综合题、菱形的性质、等边三角形的判定、全等三角形的判定和性质等知识,解题的关键是灵活应用这些知识解决问题,学会添加常用辅助线,属于中考压轴题.20、(1)10,0.28,50(2)图形见解析(3)6.4(4)528【解析】分析:(1)首先求出总人数,再根据频率,总数,频数的关系即可解决问题;(2)根据a的值画出条形图即可;(3)根据平均数的定义计算即可;(4)用样本估计总体的思想解决问题即可;详解:(1)由题意c==50,a=50×0.2=10,b==0.28,c=50;故答案为10,0.28,50;(2)将频数分布表直方图补充完整,如图所示:(3)所有被调查学生课外阅读的平均本数为:(5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本).(4)该校七年级学生课外阅读7本及以上的人数为:(0.28+0.16)×1200=528(人).点睛:本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.21、(1)16,40;(2),见解析;(3)估计成绩优秀的学生有470名.【解析】
(1)根据若A组的频数比B组小24,且已知两个组的百分比,据此即可求得总人数,然后根据百分比的意义求得a、b的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数乘以对应的百分比即可求解.【详解】(1)学生总人数:(人)则,(2),组的人数是:(人),补全条形统计图如图(3)样本、两组的百分数的和为,∴(名)答:估计成绩优秀的学生有470名.【点睛】本题考查的是频数分布直方图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.直方图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体的思想.22、(1)详见解析;(2)四边形AFCE是矩形,证明见解析;(3)四边形AFCE是正方形.【解析】
(1)由平行四边形的性质得出OB=OD,OA=OC,AD∥BC,得出∠OBF=∠ODE,由ASA证明△BFO≌△DEO即可;(2)由全等三角形的性质得出BF=DE,证出四边形AFCE是平行四边形,再证出∠AFC=90°,即可得出四边形AFCE是矩形.(3)由EF平分∠AEC知∠AEF=∠CEF,再由AD∥BC知∠AEF=∠CFE,从而得∠CEF=∠CFE,继而知CE=CF,据此可得答案.【详解】解:(1)∵四边形ABCD是平行四边形,∴OB=OD,AD∥BC,AD=BC,∴∠OBF=∠ODE,在△BFO和△DEO中,∵,∴△BFO≌△DEO(ASA);(2)四边形AFCE是矩形;理由如下:∵△BFO≌△DEO,∴BF=DE,∴CF=AE,∵AD∥BC,∴四边形AFCE是平行四边形;又∵AF⊥BC,∴∠AFC=90°,∴四边形AFCE是矩形;(3)∵EF平分∠AEC,∴∠AEF=∠CEF,∵AD∥BC,∴∠AEF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,∴四边形AFCE是正方形.【点睛】本题考查了四边形的综合问题,主要考查平行四边形的性质与判定、全等三角形的判定与性质、矩形的判定;熟练掌握平行四边形的性质,并能进行推理论证是解决问题的关键.23、(1)等腰直角;(2)结论仍成立,见解析;(3)或,.【解析】
(1)结论:DM⊥EM,DM=EM.只要证明△AMH≌△FME,推出MH=ME,AH=EF=EC,推出DH=DE,因为∠EDH=90°,可得DM⊥EM,DM=ME;
(2)结论不变,证明方法类似;
(3)分两种情形画出图形,理由勾股定理以及等腰直角三角形的性质解决问题即可;【详解】解:(1)△AMN≌△FME,等腰直角.如图1中,延长EM交AD于H.
∵四边形ABCD是正方形,四边形EFGC是正方形,
∴,,
∴,
∴,
∵,,
∴△AMH≌△FME,
∴,,
∴,
∵,
∴DM⊥EM,DM=ME.(2)结论仍成立.如图,延长EM交DA的延长线于点H,∵四边形ABCD与四边形CEFG都是正方形,∴,,∴AD∥EF,∴.∵,,∴△AMF≌△FME(ASA),…∴,,∴.在△DHE中,,,,∴,DM⊥EM.(3)①当E点在CD边上,如图1所示,由(1)的结论可得三角形DME为等腰直角三角形,则DM的长为,此时,所以;②当E点在CD的延长线上时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度物流市场调研合同3篇
- 2024年度冷冻油脂仓储物流配送合同3篇
- 2024年创新员工合同范本3篇
- 2024年度软件开发合同:甲方委托乙方开发定制化管理系统3篇
- 2024年度全球定位系统设备购买合同3篇
- 2024工程设计专利许可合同
- 2024年化妆品合作供应与服务协议版B版
- 军火销售合同三篇
- 2024年度办公楼空调清洁保养合同3篇
- 2024年度美术老师聘请合同书样本3篇
- 南京市2023-2024学年八年级上学期期末道德与法治试卷(含答案解析)
- 尿液分析仪校准规范
- 第3课《生命的奇迹》课件
- 《流感疫苗》课件
- 第9课高中历史选择性必修2经济与社会生活
- 中国马克思主义与当代课后习题答案
- 《木工》培训教学大纲及教学计划
- 沉香种植可行性方案
- 《儿科常见皮疹疾病》课件
- 2024年中冶建工集团有限公司招聘笔试参考题库含答案解析
- 产科预见性护理
评论
0/150
提交评论