2024届福建省南安市八年级下册数学期末学业水平测试模拟试题含解析_第1页
2024届福建省南安市八年级下册数学期末学业水平测试模拟试题含解析_第2页
2024届福建省南安市八年级下册数学期末学业水平测试模拟试题含解析_第3页
2024届福建省南安市八年级下册数学期末学业水平测试模拟试题含解析_第4页
2024届福建省南安市八年级下册数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福建省南安市八年级下册数学期末学业水平测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.学校升旗仪式上,徐徐上升的国旗的高度与时间的关系可以用一幅图近似地刻画,这幅图是下图中的()A. B.C. D.2.如图,MN是正方形ABCD的一条对称轴,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD=()A.60° B.45° C.30° D.15°3.如图,在中,,,,则点到的距离为()A. B. C. D.4.如图,△ABC中,AB=AC=5,BC=6,点D在BC上,且AD平分∠BAC,则AD的长为()A.6 B.5 C.4 D.35.要使分式有意义,则x的取值满足的条件是()A. B. C. D.6.2019年6月7日是端午节,某幼儿园对全体小朋友爱吃哪种粽子做调查,以决定最终买哪种口味的粽子.下面的调查数据最值得关注的是()A.众数 B.中位数 C.平均数 D.方差7.在RtABC中,∠C90,AB3,AC2,则BC的值()A. B. C. D.8.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间20分钟 B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟 D.便利店离小丽家的距离为1000米9.直角三角形两条直角边的长分别为3和4,则斜边长为()A.4 B.5 C.6 D.1010.下列说法错误的是A.必然事件发生的概率为 B.不可能事件发生的概率为C.有机事件发生的概率大于等于、小于等于 D.概率很小的事件不可能发生二、填空题(每小题3分,共24分)11.如图,是六边形的一个内角.若,则的度数为________.12.点A(x1,y1)、B(x2,y2)在一次函数y=-2x+b的图象上,若x1<x2,则y1______y2(填“<”或“>”或“=”).13.如图,已知,点在边上,.过点作于点,以为一边在内作等边,点是围成的区域(包括各边)内的一点,过点作交于点,作交于点.设,,则最大值是_______.14.某商场为了统计某品牌运动鞋哪个号码卖得最好,则应关注该品牌运动鞋各号码销售数据的平均数、众数、中位数这三个数据中的_____________.15.如果一个n边形的内角和等于它的外角和的3倍,则n=______.16.关于的一元二次方程有两个不相等的实数根,则实数的取值范围为__________.17.如果关于的方程有实数解,那么的取值范围是_________.18.把一个转盘平均分成三等份,依次标上数字1、2、3,自由转动转盘两次,把第一次转动停止后指针指向的数字记作x,把第二次转动停止后指针指向的数字记作y,则x与y的和为偶数的概率为______.三、解答题(共66分)19.(10分)(1)分解因式:a3-2a2b+ab2;(2)解方程:x2+12x+27=020.(6分)某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费.②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.21.(6分)如图,AE∥BF,AC平分∠BAE,交BF于点C.(1)求证:AB=BC;(2)尺规作图:在AE上找一点D,使得四边形ABCD为菱形(不写作法,保留作图痕迹)22.(8分)铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.(1)试销时该品种苹果的进货价是每千克多少元?(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70%)售完,那么超市在这两次苹果销售中共盈利多少元?23.(8分)如图,已知中,,点以每秒1个单位的速度从向运动,同时点以每秒2个单位的速度从向方向运动,到达点后,点也停止运动,设点运动的时间为秒.(1)求点停止运动时,的长;(2)两点在运动过程中,点是点关于直线的对称点,是否存在时间,使四边形为菱形?若存在,求出此时的值;若不存在,请说明理由.(3)两点在运动过程中,求使与相似的时间的值.24.(8分)如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交点为

A(-3,0),与y轴交点为B,且与正比例函数y=43x的图象的交于点

C(m(1)求m的值及一次函数

y=kx+b的表达式;(2)若点P是y轴上一点,且△BPC的面积为6,请直接写出点P的坐标.25.(10分)如图,矩形的长,宽,现将矩形的一角沿折痕翻折,使得点落在边上,求点的位置(即的长)。26.(10分)如图:在正方形ABCD中,点P、Q是CD边上的两点,且DP=CQ,过D作DG⊥AP于H,交AC、BC分别于E,G,AP、EQ的延长线相交于R.(1)求证:DP=CG;(2)判断△PQR的形状,请说明理由.

参考答案一、选择题(每小题3分,共30分)1、A【解析】根据题意:徐徐上升的国旗的高度与时间的变化是稳定的,即为直线上升.故选A.2、B【解析】

连接BD交MN于P′,如图,利用两点之间线段最短可得到此时P′C+P′D最短,即点P运动到P′位置时,PC+PD最小,然后根据正方形的性质求出∠P′CD的度数即可.【详解】连接BD交MN于P′,如图:∵MN是正方形ABCD的一条对称轴∴P′B=P′C∴P′C+P′D=P′B+P′D=BD∴此时P′C+P′D最短,即点P运动到P′位置时,PC+PD最小∵点P′为正方形的对角线的交点∴∠P′CD=45°.故选B.【点睛】本题涉及了轴对称-最短路线问题及正方形的性质等知识点,关键是熟练掌握把两条线段的位置关系转换,再利用两点之间线段最短或者垂线段最短来求解.3、D【解析】

根据直角三角形的性质、勾股定理分别求出AB、BC,根据三角形的面积公式计算即可.【详解】解:设点C到AB的距离为h,

∵∠C=90°,∠A=30°,

∴AB=2BC,

由勾股定理得,AB2-BC2=AC2,即(2BC)2-BC2=22,

解得,BC=,

则AB=2BC=,

由三角形的面积公式得,,

解得,h=1,

故选:D.【点睛】本题考查的是直角三角形的性质,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.4、C【解析】分析:根据等腰三角形三线合一的性质可得BD=CD,然后根据勾股定理求出AD的长即可.详解:∵AB=AC=5,AD平分∠BAC,BC=6∴BD=CD=3,∠ADB=90°∴AD==4.故选C.点睛:本题考查了等腰三角形三线合一的性质和勾股定理,熟记性质并准确识图是解题的关键.5、B【解析】

根据分式有意义的条件是分母不等于零可得x+2≠0;解不等式可得结果,从而得出正确选项.【详解】由分式有意义的条件可得x+2≠0,解得x≠-2.故答案选B.【点睛】本题考查了分式有意义的条件,解题的关键是掌握分式有意义的条件是分母不等于零.6、A【解析】

幼儿园最值得关注的应该是哪种粽子爱吃的人数最多,即众数.【详解】解:由于众数是数据中出现次数最多的数,故幼儿园最值得关注的应该是统计调查数据的众数.故选A.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.7、A【解析】

根据勾股定理即可求出.【详解】由勾股定理得,.故选.【点睛】本题考查的是勾股定理,掌握勾股定理是解题的关键.8、C【解析】解:A.小丽从家到达公园共用时间20分钟,正确;B.公园离小丽家的距离为2000米,正确;C.小丽在便利店时间为15﹣10=5分钟,错误;D.便利店离小丽家的距离为1000米,正确.故选C.9、B【解析】

利用勾股定理即可求出斜边长.【详解】由勾股定理得:斜边长为:=1.故选B.【点睛】本题考查了勾股定理;熟练掌握勾股定理,理解勾股定理的内容是解题的关键.10、D【解析】

利用概率的意义分别回答即可得到答案.概率的意义:必然事件就是一定发生的事件,概率是1;不可能发生的事件就是一定不发生的事件,概率是0;随机事件是可能发生也可能不发生的事件,概率>0且<1;不确定事件就是随机事件.【详解】解:A、必然发生的事件发生的概率为1,正确;

B、不可能发生的事件发生的概率为0,正确;

C、随机事件发生的概率大于0且小于1,正确;

D、概率很小的事件也有可能发生,故错误,

故选D.【点睛】本题考查了概率的意义及随机事件的知识,解题的关键是了解概率的意义.二、填空题(每小题3分,共24分)11、【解析】

根据多边形的内角和=(n-2)x180求出六边形的内角和,把∠E=120°代入,即可求出答案.【详解】解:∵∠A+∠B+∠C+∠D+∠E+∠F=(6-2)×180=720°∵∠E=120°∴∠A+∠B+∠C+∠D+∠F=720°-120°=600°故答案为600°【点睛】本题考查了多边形的内角和外角,能知道多边形的内角和公式是解此题的关键,边数为7的多边形的内角和=(n-2)×180°.12、>【解析】

根据一次函数图象的增减性进行答题.【详解】解:∵一次函数y=-2x+b中的x的系数-2<0,∴该一次函数图象是y随x的增大而减小,∴当x1<x2时,y1>y2故答案是:>.【点睛】本题考查了一次函数图象上点的左边特征.此题也可以把点A、B的坐标代入函数解析式,求得相应的y的值,然后再比较大小.13、【解析】

过P作PH⊥OY于点H,构建含30°角的直角三角形,先证明四边形EODP是平行四边形,得EP=OD=a,在Rt△HEP中,由∠EPH=30°,可得EH的长,从而可得a+2b与OH的关系,确认OH取最大值时点H的位置,可得结论.【详解】解:过P作PH⊥OY于点H,∵PD∥OY,PE∥OX,∴四边形EODP是平行四边形,∠HEP=∠XOY=60°,∴EP=OD=a,∠EPH=30°,∴EH=EP=a,∴a+2b=2()=2(EH+EO)=2OH,∴当P在点B处时,OH的值最大,此时,OC=OA=1,AC==BC,CH=,∴OH=OC+CH=1+=,此时a+2b的最大值=2×=5.故答案为5.【点睛】本题考查了等边三角形的性质、30°的直角三角形的性质和平行四边形的判定和性质,掌握求a+2b的最大值就是确定OH的最大值,即可解决问题.14、众数【解析】

根据题意可得:商场应该关注鞋的型号的销售量,特别是销售量最大的鞋型号即众数.【详解】某商场应该关注的各种鞋型号的销售量,特别是销售量最大的鞋型号,由于众数是数据中出现次数最多的数,故最应该关注的是众数.故答案为:众数.【点睛】本题考查了统计的有关知识,主要包括平均数、中位数、众数和极差.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.15、1【解析】

根据多边形内角和公式110°(n-2)和外角和为360°可得方程110(n-2)=360×3,再解方程即可.【详解】解:由题意得:110(n-2)=360×3,解得:n=1,故答案为:1.【点睛】此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.16、m<【解析】

根据一元二次方程有两个不相等的实数根可得△=(-3)2−4m>0,求出m的取值范围即可.【详解】解:∵一元二次方程有两个不相等的实数根,∴△=(-3)2−4m>0,∴m<,故答案为:m<.【点睛】本题主要考查了根的判别式的知识,解答本题的关键是掌握一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根,此题难度不大.17、【解析】

由方程有实数根确定出m的范围即可.【详解】解:∵关于x的方程(m-1)x+1=0有实数解,

∴m-1≠0,即m≠1,

故答案为:m≠1【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.18、【解析】

画出树状图得出所有等可能结果与两数和为偶数的结果数,然后根据概率公式列式计算即可得解.【详解】解:根据题意,画出树状图如下:一共有9种等可能情况,其中x与y的和为偶数的有5种结果,∴x与y的和为偶数的概率为,故答案为:.【点睛】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.三、解答题(共66分)19、a(a-b)2,x=-3或x=-9.【解析】

(1)先提取公因式,在运用公式法因式分解即可。(2)运用因式分解法,即可解方程。【详解】解:(1)a3-2a2b+ab2=a(a2-2ab+b2)=a(a-b)2(2)x2+12x+27=0(x+3)(x+9)=27即:x+3=0或x+9=0解得:x=-3或x=-9【点睛】本题考查了因式分解及其应用,特别是用因式分解解一元二次方程是常用的方法。20、(1)银卡消费:y=10x+150,普通消费:y=20x;(2)A(0,150),B(15,300),C(45,600);(3)答案见解析.【解析】试题分析:(1)根据银卡售价150元/张,每次凭卡另收10元,以及旅游馆普通票价20元/张,设游泳x次时,分别得出所需总费用为y元与x的关系式即可;(2)利用函数交点坐标求法分别得出即可;(3)利用(2)的点的坐标以及结合得出函数图象得出答案.解:(1)由题意可得:银卡消费:y=10x+150,普通消费:y=20x;(2)由题意可得:当10x+150=20x,解得:x=15,则y=300,故B(15,300),当y=10x+150,x=0时,y=150,故A(0,150),当y=10x+150=600,解得:x=45,则y=600,故C(45,600);(3)如图所示:由A,B,C的坐标可得:当0<x<15时,普通消费更划算;当x=15时,银卡、普通票的总费用相同,均比金卡合算;当15<x<45时,银卡消费更划算;当x=45时,金卡、银卡的总费用相同,均比普通票合算;当x>45时,金卡消费更划算.【点评】此题主要考查了一次函数的应用,根据数形结合得出自变量的取值范围得出是解题关键.21、(1)证明见解析;(2)画图见解析.【解析】

(1)根据平行线的性质和角平分线的定义即可得到结论;

(2)在射线AE上截取AD=AB,根据菱形的判定定理即可得到结论.【详解】解:(1)∵AE∥BF,∴∠EAC=∠ACB,又∵AC平分∠BAE,∴∠BAC=∠EAC,∴∠BAC=∠ACB,∴BA=BC.(2)主要作法如下:【点睛】本题考查了作图-复杂作图,菱形的判定,正确的作出图形是解题的关键.22、(1)试销时该品种苹果的进货价是每千克5元;(2)商场在两次苹果销售中共盈利4160元.【解析】

解:(1)设试销时该品种苹果的进货价是每千克x元解得x=5经检验:x=5是原方程的解,并满足题意答:试销时该品种苹果的进货价是每千克5元.(2)两次购进苹果总重为:千克共盈利:元答:共盈利4160元.23、(1)(2)(3)或【解析】

(1)求出点Q的从B到A的运动时间,再求出AP的长,利用勾股定理即可解决问题.(2)如图1中,当四边形PQCE是菱形时,连接QE交AC于K,作QD⊥BC于D.根据DQ=CK,构建方程即可解决问题.(3)分两种情形:如图3-1中,当∠APQ=90°时,如图3-2中,当∠AQP=90°时,分别构建方程即可解决问题.【详解】(1)在Rt△ABC中,∵∠C=90°,AC=6,BC=8,∴AB==10,点Q运动到点A时,t==5,∴AP=5,PC=1,在Rt△PBC中,PB=.(2)如图1中,当四边形PQCE是菱形时,连接QE交AC于K,作QD⊥BC于D.∵四边形PQCE是菱形,∴PC⊥EQ,PK=KC,∵∠QKC=∠QDC=∠DCK=90°,∴四边形QDCK是矩形,∴DQ=CK,∴,解得t=.∴t=s时,四边形PQCE是菱形.(3)如图2中,当∠APQ=90°时,∵∠APQ=∠C=90°,∴PQ∥BC,∴,∴,∴.如图3中,当∠AQP=90°时,∵△AQP∽△ACB,∴,∴,∴,综上所述,或s时,△APQ是直角三角形.【点睛】本题属于相似形综合题,考查了菱形的判定和性质,相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题.24、(1)m的值为3,一次函数的表达式为y=(2)点P的坐标为(0,6)、(0,-2)【解析】(1)首先利用待定系数法把C(m,4)代入正比例函数y=43(2)利用△BPC的面积为6,即可得出点P的坐标.解:(1)∵点C(m,4)在正比例函数y=4∴4=43·m,m

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论