2024年山东省济宁嘉祥县联考八年级下册数学期末学业质量监测试题含解析_第1页
2024年山东省济宁嘉祥县联考八年级下册数学期末学业质量监测试题含解析_第2页
2024年山东省济宁嘉祥县联考八年级下册数学期末学业质量监测试题含解析_第3页
2024年山东省济宁嘉祥县联考八年级下册数学期末学业质量监测试题含解析_第4页
2024年山东省济宁嘉祥县联考八年级下册数学期末学业质量监测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年山东省济宁嘉祥县联考八年级下册数学期末学业质量监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,CD⊥AB于D,则CD的长是()A.5 B.7 C. D.2.武侯区某学校计划选购甲,乙两种图书为“初中数学分享学习课堂之生讲生学”初赛的奖品.已知甲图书的单价是乙图书单价的1.5倍,用600元单独购买甲种图书比单独购买乙种图书少10本,设乙种图书的价为x元,依据题意列方程正确的是()A. B. C. D.3.在以下”绿色食品、响应环保、可回收物、节水“四个标志图案中,是中心对称图形的是()A. B. C. D.4.函数y=中,自变量x的取值范围是()A.x>-3 B.x≠0 C.x>-3且x≠0 D.x≠-35.如图,天平右盘中的每个砝码的质量都是1克,则物体A的质量m克的取值范围表示在数轴上为(

)A.

B.C.

D.6.平行四边形、矩形、菱形、正方形共有的性质是()A.对角线相等 B.对角线互相垂直C.对角线互相平分 D.对角形互相垂直平分7.下列图形既是轴对称图形,又是中心对称图形的是()A.三角形B.菱形C.角D.平行四边形8.如图,七边形ABCDEFG中,AB、ED的延长线交于点O,若、、、对应的邻补角和等于,则的度数为()A. B. C. D.9.下列关于变量x,y的关系,其中y不是x的函数的是()A. B.C. D.10.如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿AB向B点运动,设E点的运动时间为t秒,连接DE,当以B、D、E为顶点的三角形与△A.2或3.5 B.2或3.2 C.2或3.4 D.3.2或3.411.已知,矩形OABC按如图所示的方式建立在平面直角坐标系总,AB=4,BC=2,则点B的坐标为()A.(4,2) B.(﹣2,4) C.(4,﹣2) D.(﹣4,2)12.函数y1=x+1与y2=ax+b(a≠0)的图象如图所示,这两个函数图象的交点在y轴上,那么使y1>y2的x的取值范围是()A.x>0 B.x>1 C.x>-1 D.-1<x<2二、填空题(每题4分,共24分)13.如图,在中,的平分线AD交BC于点D,的两边分别与AB、AC相交于M、N两点,且,若,则四边形AMDN的面积为___________.14.如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,则△ABD的面积是______.15.计算或化简(1)(2)16.如图,在平面直角坐标系xOy中,直线,分别是函数和的图象,则可以估计关于x的不等式的解集为_____________.17.如图,已知一次函数与一次函数的图像相交于点P(-2,1),则关于不等式x+b≥mx-n的解集为_____.18.如图,把菱形ABCD沿AH折叠,使B点落在BC上的E点处,若∠B=70°,则∠EDC的大小为______.三、解答题(共78分)19.(8分)如图,▱ABOC放置在直角坐标系中,点A(10,4),点B(6,0),反比例函数y=(x>0)的图象经过点C.(1)求该反比例函数的表达式.(2)记AB的中点为D,请判断点D是否在该反比例函数的图象上,并说明理由.(3)若P(a,b)是反比例函数y=的图象(x>0)的一点,且S△POC<S△DOC,则a的取值范围为_____.20.(8分)对于实数a,b,定义运算“⊗”:a⊗b=,例如:5⊗3,因为5>3,所以5⊗3=5×3﹣32=1.若x1,x2是一元二次方程x2﹣3x+2=0的两个根,则x1⊗x2等于()A.﹣1 B.±2 C.1 D.±121.(8分)如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣1),B(1,3)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的解析式;(2)求△AOB的面积.22.(10分)如图,点E,F在矩形的边AD,BC上,点B与点D关于直线EF对称.设点A关于直线EF的对称点为G.(1)画出四边形ABFE关于直线EF对称的图形;(2)若∠FDC=16°,直接写出∠GEF的度数为;(3)若BC=4,CD=3,写出求线段EF长的思路.23.(10分)如图,铁路上A,B两点相距25km,C,D为两村庄,于点A,于点B,若,,现要在AB上建一个周转站E,使得C,D两村到E站的距离相等,则周转站E应建在距A点多远处?24.(10分)在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分.而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的6位数密码就很有必要了.有一种用“因式分解法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2﹣x﹣2因式分解的结果为(x﹣1)(x+1)(x+2),当x=18时,x﹣1=17,x+1=19,x+2=20,此时可以得到数字密码1.(1)根据上述方法,当x=21,y=7时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码?(写出两个)(2)若多项式x3+(m﹣3n)x2﹣nx﹣21因式分解后,利用本题的方法,当x=27时可以得到其中一个密码为242834,求m、n的值.25.(12分)如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F,(1)求证:△ADE≌△CBF;(2)求证:四边形BFDE为矩形.26.在四边形中,对角线、相交于点,过点的直线分别交边、、、于点、、、(1)如图①,若四边形是正方形,且,易知,又因为,所以(不要求证明)(2)如图②,若四边形是矩形,且,若,,,求的长(用含、、的代数式表示);(3)如图③,若四边形是平行四边形,且,若,,,则.

参考答案一、选择题(每题4分,共48分)1、C【解析】

首先利用勾股定理计算出AB的长,再根据三角形的面积公式计算出CD的长即可.【详解】解:∵在Rt中,∠ACB=90°,AC=4,BC=3,∴AB=∵×AC×BC=×CD×AB,∴×3×4=×5×CD,解得:CD=.故选.【点睛】本题主要考查了勾股定理,以及三角形的面积,关键是熟练掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和等于斜边长的平方.2、A【解析】

根据“600元单独购买甲种图书比单独购买乙种图书少10本”列出相应的分式方程,本题得以解决.【详解】由题意可得,,故选:A.【点睛】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.3、B【解析】

根据中心对称图形的概念解答即可.【详解】选项A,是轴对称图形,不是中心对称图形;选项B,不是轴对称图形,是中心对称图形;选项C,不是轴对称图形,不是中心对称图形;选项D,不是轴对称图形,不是中心对称图形.故选B.【点睛】本题考查了中心对称图形的概念:如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形.4、D【解析】试题分析:根据分式的意义,可知其分母不为0,可得x+3≠0,解得x≠-3.故选D5、C【解析】根据天平知2<A<3,然后观察数轴,只有C符合题意,故选C6、C【解析】

根据平行四边形,矩形,菱形,正方形的对角线的性质对各选项分析判断后利用排除法求解.【详解】解:A、只有矩形,正方形的对角线相等,故本选项错误;B、只有菱形,正方形的对角线互相垂直,故本选项错误;C、平行四边形、矩形、菱形、正方形的对角线都互相平分,故本选项正确;D、只有菱形,正方形的对角线互相垂直平分,故本选项错误.故选:C.【点睛】本题主要考查了平行四边形,矩形,菱形,正方形的对角线的性质,是基础题,熟记各图形的性质是解题的关键.7、B【解析】【分析】根据轴对称图形与中心对称图形的概念进行求解即可.【详解】A、三角形不一定是轴对称图形和中心对称图形,故本选项错误;B、菱形既是轴对称图形又是中心对称图形,故本选项正确;C、角是轴对称图形但不一定是中心对称图形,故本选项错误;D、平行四边形是中心对称图形但不一定是轴对称图形,故本选项错误,故选B.【点睛】本题主要考查了中心对称图形与轴对称图形的概念:判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、C【解析】

由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和,可求得五边形OAGFE的内角和,则可求得∠BOD.【详解】解:∵∠1、∠2、∠3、∠4的外角的角度和为225°,

∴∠1+∠2+∠3+∠4+225°=4×180°,

∴∠1+∠2+∠3+∠4=495°,

∵五边形OAGFE内角和=(5-2)×180°=540°,

∴∠1+∠2+∠3+∠4+∠BOD=540°,

∴∠BOD=540°-495°=45°,

故选:C.【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.9、C【解析】

根据函数的定义,设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量,进而判断得出即可.【详解】解:选项ABD中,对于x的每一个确定的值,y都有唯一的值与其对应,故y是x的函数;只有选项C中,x取1个值,y有2个值与其对应,故y不是x的函数.故选C.【点睛】此题主要考查了函数的定义,正确掌握函数定义是解题关键.10、A【解析】

求出AB=2BC=4cm,分两种情况:①当∠EDB=∠ACB=90°时,DE∥AC,△EBD∽△ABC,得出AE=BE=12AB=2cm,即可得出t=2s;②当∠DEB=∠ACB=90°时,证出△DBE∽△ABC,得出∠BDE=∠A=30°,因此BE=12BD=12cm,得出AE=3.5cm【详解】解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∴AB=2BC=4cm,分两种情况:①当∠EDB=∠ACB=90°时,DE∥AC,所以△EBD∽△ABC,E为AB的中点,AE=BE=12AB=2cm∴t=2s;②当∠DEB=∠ACB=90°时,∵∠B=∠B,∴△DBE∽△ABC,∴∠BDE=∠A=30°,∵D为BC的中点,∴BD=12BC=1cm∴BE=12BD=0.5cm∴AE=3.5cm,∴t=3.5s;综上所述,当以B、D、E为顶点的三角形与△ABC相似时,t的值为2或3.5,故选:A.【点睛】本题考查了相似三角形的判定、平行线的性质、含30°角的直角三角形的性质等知识;熟记相似三角形的判定方法是解决问题的关键,注意分类讨论.11、C【解析】

直接利用矩形的性质结合点B所在象限得出点B坐标即可【详解】解:∵矩形OABC中,AB=4,BC=2,∴点B的坐标为:(4,﹣2).故选C.【点睛】此题主要考查矩形的性质,以及坐标系中点坐标的表示12、A【解析】

当x>0时,函数y1=x+1的图象在函数y2=ax+b(a≠0)的图象上方,据此可得使y1>y2的x的取值范围是x>0【详解】由图可得,当x>0时,函数y1=x+1的图象在函数y2=ax+b(a≠0)的图象的上方,∴使y1>y2的x的取值范围是x>0,故选:A.【点睛】本题主要考查了一次函数与一元一次不等式的关系,解答此题的关键是利用数形结合的思想方法求解。二、填空题(每题4分,共24分)13、9.【解析】

作DE⊥AB于点E,DF⊥AC于点F,依据HL判定Rt△ADE≌Rt△ADF,即可得出AE=AF;判定△DEM≌△DFN,可得S△DEM=S△DFN,进而得到S四边形AMDN=S四边形AEDF,求得S△ADF=AF×DF=,即可得出结论.【详解】解:作DE⊥AB于点E,DF⊥AC于点F,∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,

∴DE=DF,

又∵DE⊥AB于点E,DF⊥AC于点F,

∴∠AED=∠AFD=90°,

又∵AD=AD,

∴Rt△ADE≌Rt△ADF(HL),

∴AE=AF;∵∠MDN+∠BAC=180°,

∴∠AMD+∠AND=180°,

又∵∠DNF+∠AND=180°

∴∠EMD=∠FND,

又∵∠DEM=∠DFN,DE=DF,

∴△DEM≌△DFN,

∴S△DEM=S△DFN,

∴S四边形AMDN=S四边形AEDF,

∵,AD平分∠BAC,

∴∠DAF=30°,∴Rt△ADF中,DF=3,AF==3,

∴S△ADF=AF×DF=×3×3=,

∴S四边形AMDN=S四边形AEDF=2×S△ADF=9.故答案为9.【点睛】本题考查全等三角形的性质和判定、角平分线的性质定理等知识;熟练掌握全等三角形的判定与性质是解决问题的关键.14、1【解析】

延长AD到点E,使DE=AD=6,连接CE,可证明△ABD≌△CED,所以CE=AB,再利用勾股定理的逆定理证明△CDE是直角三角形,即△ABD为直角三角形,进而可求出△ABD的面积.【详解】解:延长AD到点E,使DE=AD=6,连接CE,∵AD是BC边上的中线,∴BD=CD,在△ABD和△CED中,,∴△ABD≌△CED(SAS),∴CE=AB=5,∠BAD=∠E,∵AE=2AD=12,CE=5,AC=13,∴CE2+AE2=AC2,∴∠E=90°,∴∠BAD=90°,即△ABD为直角三角形,∴△ABD的面积=AD•AB=1.故答案为1.【点睛】本题考查了全等三角形的判定和性质、勾股定理的逆定理的运用,解题的关键是添加辅助线,构造全等三角形.15、(1);【解析】

(1)根据根式的计算法则计算即可.(2)采用平方差公式计算即可.【详解】(1)原式(2)原式【点睛】本题主要考查根式的计算,这是必考题,应当熟练掌握.16、x<-2【解析】【分析】根据函数的图象进行分析,当l1的图象在l2的上方时,x的取值范围就是不等式的解集.【详解】由函数图象可知,当x<-2时,l1的图象在l2的上方.所以,的解集为x<-2.故答案为x<-2【点睛】本题考核知识点:一次函数与不等式.解题关键点:从函数图象分析函数值的大小.17、【解析】

观察函数图象得到,当时,一次函数y1=x+b的图象都在一次函数y2=mx-n的图象的上方,由此得到不等式x+b>mx-n的解集.【详解】解:不等式x+b≥mx-n的解集为.故答案为.【点睛】本题考查一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.18、15°【解析】

根据菱形的性质,可得∠ADC=∠B=70°,从而得出∠AED=∠ADE.又因为AD∥BC,故∠DAE=∠AEB=70°,∠ADE=∠AED=55°,即可求解.【详解】解:根据菱形的对角相等得∠ADC=∠B=70°.∵AD=AB=AE,∴∠AED=∠ADE.根据折叠得∠AEB=∠B=70°.∵AD∥BC,∴∠DAE=∠AEB=70°,∴∠ADE=∠AED=(180°-∠DAE)÷2=55°.∴∠EDC=70°-55°=15°.故答案为:15°.【点睛】本题考查了翻折变换,菱形的性质,三角形的内角和定理以及平行线的性质,熟练运用折叠的性质是本题的关键.三、解答题(共78分)19、(1)y=;(2)D点在反比例函数图象上;(3)2<a<4或4<a<8【解析】

根据题意可得,可得C点坐标,则可求反比例函数解析式

根据题意可得D点坐标,代入解析式可得结论.

由图象可发现,,的面积和等于▱ABCD的面积一半,即,分点P在OC上方和下方讨论,设,用a表示的面积可得不等式,可求a的范围.【详解】解:(1)∵ABOC是平行四边形∴AC=BO=6∴C(4,4)∵反比例函数y=(x>0)的图象经过点C.∴4=∴k=16∴反比例函数解析式y=(2)∵点A(10,4),点B(6,0),∴AB的中点D(8,2)当x=8时,y==2∴D点在反比例函数图象上.(3)根据题意当点P在OC的上方,作PF⊥y轴,CE⊥y轴设P(a,)S△COD=S▱ABOC﹣S△ACD﹣S△OBD∴S△COD=S▱ABOC=12∵S△POC<S△COD∴,∴a>2或a<﹣8(舍去)当点P在OC的下方,则易得4<a<8综上所述:2<a<4或4<a<8【点睛】本题考查了待定系数法解反比例函数解析式,反比例函数的系数的几何意义,平行四边形的性质,设,根据题意列出关于a的不等式是本题关键.20、D【解析】

先解方程,求出方程的解,分为两种情况,当x2=2,x2=2时,当x2=2,x2=2时,根据题意求出即可.【详解】解方程x2﹣3x+2=0得x=2或x=2,当x2=2,x2=2时,x2⊗x2=22﹣2×2=﹣2;当x2=2,x2=2时,x2⊗x2=2×2﹣22=2.故选:D.【点睛】考查解一元二次方程-因式分解法,注意分类讨论,不要漏解.21、(1)y=x+;(2).【解析】

(1)求经过已知两点坐标的直线解析式,一般是按待定系数法步骤求得;(2)△AOB的面积=S△AOD+S△BOD,因为点D是在y轴上,据其坐标特点可求出DO的长,又因为已知A、B点的坐标则可分别求三角形S△AOD与S△BOD的面积.【详解】解:(1)把A(﹣2,﹣1),B(1,3)代入y=kx+b得,解得.所以一次函数解析式为y=x+;(2)把x=0代入y=x+得y=,所以D点坐标为(0,),所以△AOB的面积=S△AOD+S△BOD=×y=x+;×2+×y=x+×1=.【点睛】本题考查了待定系数法求一次函数解析式.用待定系数法求一次函数的步骤:(1)设出函数关系式;(2)把已知条件(自变量与函数的对应值)代入函数关系式中,得到关于待定系数的方程(组).22、(1)见解析;(2)127°;(3)见解析.【解析】

(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;(2)利用翻折变换的性质结合平行线的性质得出∠1度数进而得出答案;(3)利用翻折变换的性质结合勾股定理得出答案.【详解】(1)如图所示:(2)∵∠FDC=16°,∴∠DFC=74°,由对称性得,∠1=∠2=180°∵AD∥BC,∴∠AEF=∠GEF=180°-53°=127°;故答案为:127°.(3)思路:a.连接BD交EF于点O.b.在Rt△DFC中,设FC=x,则FD=4-x,由勾股定理,求得FD长;c.Rt△BDC中,勾股可得BD=5,由点B与点D的对称性可得OD的长;d.在Rt△DFO中,同理可求OF的长,可证EF=2OF,求得EF的长.【点睛】此题主要考查了翻折变换以及矩形的性质,正确掌握翻折变换的性质是解题关键.23、E应建在距A点15km处.【解析】

根据题意设E点在距A点xkm处,再由勾股定理列出方程和,再由进行求解即可.【详解】解:设E点在距A点xkm处,则AE长为xkm,BE长为km.,是直角三角形.由勾股定理,得.同理,在中,,由题意,得,即..,解得.答:E应建在距A点15km处.【点睛】本题考查勾股定理的应用,解题的关键是掌握勾股定理的应用.24、(1)可以形成的数字密码是:212814、211428;(2)m的值是56,n的值是2.【解析】

(1)先将多项式进行因式分解,然后再根据数字密码方法形成数字密码即可;(2)设x3+(m﹣3n)x2﹣nx﹣21=(x+p)(x+q)(x+r),当x=27时可以得到其中一个密码为242834,得到方程解出p、q、r,然后回代入原多项式即可求得m、n【详解】(1)x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y),当x=21,y=7时,x+y=28,x﹣y=14,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论