




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省郑州枫杨外国语中学2024届八年级下册数学期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若式子有意义,则x的取值范围为().A.x≥2 B.x≠2 C.x≤2 D.x<22.如图,在平行四边形ABCD中,下列结论一定正确的是().A.AB=AD B.OA=OC C.AC=BD D.∠BAD=∠ABC3.如图,ABCD是一张平行四边形纸片,要求利用所学知识作出一个菱形,甲、乙两位同学的作法如下:则关于甲、乙两人的作法,下列判断正确的为()A.仅甲正确 B.仅乙正确 C.甲、乙均正确 D.甲、乙均错误4.如图,在矩形ABCD中,AB=3,AD=4,点P在AB上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于()A. B. C. D.5.京剧是中国的“国粹”,京剧脸谱是一种具有汉族文化特色的特殊化妆方法由于每个历史人物或某一种类型的人物都有一种大概的谱式,就像唱歌、奏乐都要按照乐谱一样,所以称为“脸谱”如图是京剧华容道中关羽的脸谱图案在下面的四个图案中,可以通过平移图案得到的是A. B. C. D.6.如图,在平面直角坐标系中,直线与双曲线交于、两点,且点的坐标为,将直线向上平移个单位,交双曲线于点,交轴于点,且的面积是.给出以下结论:(1);(2)点的坐标是;(3);(4).其中正确的结论有A.1个 B.2个 C.3个 D.4个7.将点P(5,3)向左平移4个单位,再向下平移1个单位后,落在函数y=kx﹣2的图象上,则k的值为()A.k=2 B.k=4 C.k=15 D.k=368.平面直角坐标系中,点A的坐标为,将线段OA绕原点O逆时针旋转得到,则点的坐标是A. B. C. D.9.如图,四边形中,,,,,则四边形的面积是().A. B. C. D.10.若将直角三角形的两直角边同时扩大2倍,则斜边扩大为原来的A.2倍B.3倍C.4倍D.5倍11.对于一次函数y=﹣2x+4,下列结论错误的是()A.函数的图象不经过第三象限B.函数的图象与x轴的交点坐标是(2,0)C.函数的图象向下平移4个单位长度得y=﹣2x的图象D.若两点A(x1,y1),B(x2,y2)在该函数图象上,且x1<x2,则y1<y212.下列各组数是勾股数的是()A. B.1,1, C. D.5,12,13二、填空题(每题4分,共24分)13.如图,已知,与之间的距离为3,与之间的距离为6,分别等边三角形的三个顶点,则此三角形的边长为__________.14.直线关于轴对称的直线的解析式为______.15.如果一组数据:5,,9,4的平均数为6,那么的值是_________16.如图,四边形ABCD是梯形,AD∥BC,AC=BD,且AC⊥BD,如果梯形ABCD的中位线长是5,那么这个梯形的高AH=___.17.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=6,BD=4,则点D到AB的距离是_________.18.小明对自己上学路线的长度进行了20次测量,得到20个数据x1,x2,…,x20,已知x1+x2+…+x20=2019,当代数式(x﹣x1)2+(x﹣x2)2+…+(x﹣x20)2取得最小值时,x的值为___________.三、解答题(共78分)19.(8分)学校决定从甲、乙两名同学中选拔一人参加“诵读经典”大赛,在相同的测试条件下,甲、乙两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83.乙:88,81,85,81,80.请回答下列问题:(1)甲成绩的中位数是______,乙成绩的众数是______;(2)经计算知,.请你求出甲的方差,并从平均数和方差的角度推荐参加比赛的合适人选.20.(8分)某移动通信公司推出了如下两种移动电话计费方式.月使用费/元主叫限定时间/分钟主叫超时费(元/分钟)方式一方式二说明:月使用费固定收取,主叫不超过限定时间不再收费,超过部分加收超时费.例如,方式一每月固定交费元,当主叫计时不超过分钟不再额外收费,超过分钟时,超过部分每分钟加收元(不足分钟按分钟计算).(1)请根据题意完成如表的填空:月主叫时间分钟月主叫时间分钟方式一收费/元______________方式二收费/元_______________(2)设某月主叫时间为(分钟),方式一、方式二两种计费方式的费用分别为(元),(元),分别写出两种计费方式中主叫时间(分钟)与费用为(元),(元)的函数关系式;(3)请计算说明选择哪种计费方式更省钱.21.(8分)一组数据从小到大顺序排列后为:1,4,6,x,其中位数和平均数相等,求x的值。22.(10分)分解因式和利用分解因式计算(1)(a2+1)2-4a2(2)已知x+y=1.2,x+3y=1,求3x2+12xy+12y2的值。23.(10分)某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用分别为每吨15元和30元,设从C市运往B市的救灾物资为x吨.(1)请填写下表;AB合计(吨)Cx240D260总计(吨)200300500(2)设C、D两市的总运费为W元,求W与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从C市到B市的路况得到了改善,缩短了运输时间,运费每吨减少n元(N>0),其余路线运费不变,若C、D两市的总运费的最小值不小于10080元,求n的取值范围.24.(10分)如图,在平行四边形ABCD中,BE平分∠ABC交CD的延长线于点E,作CF⊥BE于F.(1)求证:BF=EF;(2)若AB=8,DE=4,求平行四边形ABCD的周长.25.(12分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.26.先化简,再求值:[其中,]
参考答案一、选择题(每题4分,共48分)1、D【解析】
根据被开方式大于且等于零,分母不等于零列式求解即可.【详解】解:∵式子有意义∴∴x<2故选:D【点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.2、B【解析】
根据平行四边形的性质分析即可.【详解】由平行四边形的性质可知:①边:平行四边形的对边相等②角:平行四边形的对角相等③对角线:平行四边形的对角线互相平分.所以四个选项中A、C、D不正确,故选B.【点睛】此题主要考查了平行四边形的性质,正确把握平行四边形的性质是解题关键.3、C【解析】试题解析:根据甲的作法作出图形,如下图所示.∵四边形ABCD是平行四边形,∴AD∥BC,∵EF是AC的垂直平分线,在和中,∴≌,又∵AE∥CF,∴四边形AECF是平行四边形.∴四边形AECF是菱形.故甲的作法正确.根据乙的作法作出图形,如下图所示.∵AD∥BC,∴∠1=∠2,∠6=∠7.∵BF平分,AE平分∴∠2=∠3,∠5=∠6,∴∠1=∠3,∠5=∠7,∵AF∥BE,且∴四边形ABEF是平行四边形.∵∴平行四边形ABEF是菱形.故乙的作法正确.故选C.点睛:菱形的判定方法:有一组邻边相等的平行四边形是菱形.对角线互相垂直的平行四边形是菱形.四条边相等的平行四边形是菱形.4、B【解析】试题解析:因为AB=3,AD=4,所以AC=5,,由图可知,AO=BO,则,因此,故本题应选B.5、A【解析】
结合图形,根据平移的概念进行求解即可得.【详解】解:根据平移的定义可得图案可以通过A平移得到,故选A.【点睛】本题考查平移的基本概念及平移规律,是比较简单的几何图形变换关键是要观察比较平移前后物体的位置.6、C【解析】
(1)把A(4,a)代入,求得A为(4,2),然后代入求得k=8;(2)联立方程,解方程组即可求得B(-4,-2);
(3)根据同底等高的三角形相等,得出S△ABC=S△ABF;
(4)根据S△ABF=S△AOF+S△BOF列出,解得。【详解】解:(1)直线经过点,,,点在双曲线上,,故正确;(2)解得或,点的坐标是,故正确;(3)将直线向上平移个单位,交双曲线于点,交轴于点,,和是同底等高,,故错误;(4),,解得,故正确;故选:.【点睛】本题考查了反比例函数和一次函数的交点,待定系数法求反比例函数的解析式,三角形的面积等,求得交点坐标是解题的关键.7、B【解析】
根据点的平移规律,得出平移后的点的坐标,将该点坐标代入y=kx﹣2中求k即可.【详解】将点P(5,3)向左平移1个单位,再向下平移1个单位后点的坐标为(1,2),将点(1,2)代入y=kx﹣2中,得k﹣2=2,解得k=1.故选B.【点睛】本题考查了一次函数图象上点的坐标特点,点的坐标平移规律.关键是找出平移后点的坐标.8、A【解析】
如图作轴于E,轴于利用全等三角形的性质即可解决问题;【详解】如图作轴于E,轴于F.则≌,,,,故选:A.【点睛】本题考查坐标与图形变化、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.9、A【解析】如下图,分别过、作的垂线交于、,∴,∵,∴,在中,,∴.故选A.10、A【解析】分析:根据勾股定理知直角三角形的三边满足a2+b2=c2,当直角边扩大2倍依然满足勾股定理:(2a)2+(2b)2=(2c)2,由此确定斜边扩大的倍数.详解:直角三角形的三边满足勾股定理:a2+b2=c2,如果两直角边扩大为原来的2倍,则(2a)2+(2b)2=(2c)2,所以斜边扩大为原来的2倍.故选A.点睛:此题属于勾股定理的应用,勾股定理的内容是:直角三角形两直角边的平方和等于斜边的平方,当题目中出现直角三角形,常使用勾股定理进行求解,这个定理在几何的计算问题中是经常用到的,尤其是线段的长度以及边的关系,请同学们熟记并且能熟练地运用它.11、D【解析】
根据一次函数的性质和一次函数图象上点的坐标特征以及一次函数的几何变换进行判断.【详解】解:A、k=﹣2,b=4,函数的图象经过第一、二、四象限,不经过第三象限,不符合题意;B、函数的图象与x轴的交点坐标是(2,0),不符合题意;C、函数的图象向下平移4个单位长度得y=﹣2x的图象,不符合题意;D、若两点A(x1,y1),B(x2,y2)在该函数图象上,且x1<x2,则y2<y1,符合题意;故选D.【点睛】本题考查了一次函数的性质:当k>0,y随x的增大而增大,函数从左到右上升;当k<0,y随x的增大而减小,函数从左到右下降.也考查了一次函数图象的几何变换.12、D【解析】
欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】A.()2+()2≠()2不能构成直角三角形,不是正整数,故不是勾股数.B.()2+()2=()2能构成直角三角形,不是正整数,故不是勾股数;C.()2+()2=()2能构成直角三角形,不是正整数,故不是勾股数;D.()2+()2=()2能构成直角三角形,是正整数,故是勾股数.故答案选D【点睛】此题主要考查了勾股定理逆定理以及勾股数,解答此题掌握勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.二、填空题(每题4分,共24分)13、【解析】
如图,构造一线三等角,使得.根据“ASA”证明,从而,再在Rt△BEG中求出CE的长,再在Rt△BCE中即可求出BC的长.【详解】如图,构造一线三等角,使得.∵a∥c,∴∠1=∠AFD=60°,∴∠2+∠CAF=60°.∵a∥b,∴∠2=∠3,∴∠3+∠CAF=60°.∵∠3+∠4=60°,∴∠4=∠CAF,∵b∥c,∴∠4=∠5,∴∠5=∠CAF,又∵AC=BC,∠AFC=∠CGB,∴,∴CG=AF.∵∠ACF=60°,∴DAF=30°,∴DF=AF,∵AF2=AD2+DF2,∴,∴,同理可求,∴,∴.【点睛】本题考查了平行线的性质,全等三角形的判定与性质,含30°角的直角三角形的性质,以及勾股定理,正确作出辅助线是解答本题的关键.14、【解析】
设函数解析式为:y=kx+b,根据关于y轴对称的两直线k值互为相反数,b值相同可得出答案.【详解】∵y=kx+b和y=-3x+1关于y轴对称,∴可得:k=3,b=1.∴函数解析式为y=3x+1.故答案为:y=3x+1.【点睛】本题考查一次函数图象与几何变换,掌握直线关于y轴对称点的特点是关键.15、6【解析】
根据平均数的定义,即可求解.【详解】根据题意,得解得故答案为6.【点睛】此题主要考查平均数的求解,熟练掌握,即可解题.16、1.【解析】
过点D作DF∥AC交BC的延长线于F,作DE⊥BC于E.可得四边形ACFD是平行四边形,根据平行四边形的性质可得AD=CF,再判定△BDF是等腰直角三角形,根据等腰直角三角形的性质求出AH=BF解答.【详解】如图,过点D作DF∥AC交BC的延长线于F,作DE⊥BC于E.则四边形ACFD是平行四边形,∴AD=CF,∴AD+BC=BF,∵梯形ABCD的中位线长是1,∴BF=AD+BC=1×2=10.∵AC=BD,AC⊥BD,∴△BDF是等腰直角三角形,∴AH=DE=BF=1,故答案为:1.【点睛】本题考查了梯形的中位线,等腰直角三角形的判定与性质,平行四边形的判定与性质,梯形的问题关键在于准确作出辅助线.17、1【解析】
首先根据已知易求CD=1,利用角平分线的性质可得点D到AB的距离是1.【详解】∵BC=6,BD=4,∴CD=1.∵∠C=90°,AD平分∠CAB,∴点D到AB的距离=CD=1.故答案为:1.【点睛】此题考查角平分线的性质:角平分线上的任意一点到角的两边距离相等;本题比较简单,属于基础题.18、100.1【解析】
先设出y=(x-x1)2+(x-x2)2+(x-x3)2+…+(x-x20)2,然后进行整理得出y=20x2-2(x1+x2+x3+…+x20)x+(x12+x22+x32+…+x202),再求出二次函数的最小值即可.【详解】解:设y=(x-x1)2+(x-x2)2+(x-x3)2+…+(x-x20)2
=x2-2xx1+x12+x2-2xx2+x22+x2-2xx3+x32+…+x2-2xx20+x202
=20x2-2(x1+x2+x3+…+x20)x+(x12+x22+x32+…+x202),
=20x2-2×2019x+(x12+x22+x32+…+x202),
则当x=时,(x-x1)2+(x-x2)2+(x-x3)2+…+(x-x20)2取得最小值,
即当x=100.1时,(x-x1)2+(x-x2)2+(x-x3)2+…+(x-x20)2取得最小值.
故答案为100.1.【点睛】此题考查了二次函数的性质,关键是设y=(x-x1)2+(x-x2)2+(x-x3)2+…+(x-x20)2,整理出一个二次函数.三、解答题(共78分)19、(1)83,81;(2),推荐甲去参加比赛.【解析】
(1)根据中位数和众数分别求解可得;(2)先计算出甲的平均数和方差,再根据方差的意义判别即可得.【详解】(1)甲成绩的中位数是83分,乙成绩的众数是81分,故答案为:83分、81分;(2),∴.∵,,∴推荐甲去参加比赛.【点睛】此题主要考查了方差、平均数、众数、中位数等统计量,其中方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.20、(1),;(2),;(3)当时方式一省钱;当时,方式二省钱,当时;方式一省钱,当为分钟、分钟时,两种方式费用相同【解析】
(1)按照表格中的收费方式计算即可;(2)根据表格中的收费方式,对t进行分段列出函数关系式;(3)根据t的取值范围,列出不等式解答即可.【详解】解:(1)由题意可得:月主叫时间分钟时,方式一收费为元;月主叫时间分钟时,方式二收费为元;故答案为:;.(2)由题意可得:(元)的函数关系式为:(元)的函数关系式为:(3)①当时方式一更省钱;②当时,若两种方式费用相同,则当.解得:即当,两种方式费用相同,当时方式一省钱当时,方式二省钱;③当时,若两种方式费用相同,则当,解得:即当,两种方式费用相同,当时方式二省钱,当时,方式一省钱;综上所述,当时方式一省钱;当时,方式二省钱,当时,方式一省钱,当为分钟、分钟时,两种方式费用相同.【点睛】本题考查了一次函数中方案选择问题,解题的关键是表达出不同收费方式的函数关系式,再利用不等式的知识对不同时间内进行讨论.21、x=9【解析】
根据这组数据的中位数和平均数相等,得出(4+6)÷2=(1+4+6+x)÷4,求出x的值.【详解】解:依题意可得:(4+6)÷2=(1+4+6+x)÷4,解得x=9,故答案为:9.【点睛】此题考查了中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.22、(1);(2)1.18【解析】
(1)原式利用平方差公式及完全平方公式分解即可;
(2)原式提取公因式,将已知等式代入计算即可求出值.【详解】解:(1)原式=(a2+1+2a)(a2+1-2a)=(a+1)2(a+1)2(2)∵x+y=1.2,x+3y=1∴2x+4y=1.2∴x+2y=1.6∴原式=3(x2+4xy+4y2)=3(x+2y)2=3×1.6×1.6=1.18【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.23、(1)240﹣x、x﹣40、260﹣x;(2)40≤x≤240;(1)0<n≤1.【解析】
(1)根据题意可以将表格中的空缺数据补充完整,(2)根据题意可以求得W与x的函数关系式,并写出x的取值范围,(1)根据题意,利用分类讨论的数学思想可以解答本题.【详解】解:(1)∵C市运往B市x吨,∴C市运往A市(240﹣x)吨,D市运往B市(100﹣x)吨,D市运往A市260﹣(100﹣x)=(x﹣40)吨,故答案为:240﹣x、x﹣40、260﹣x;(2)由题意可得,W=20(240﹣x)+25x+15(x﹣40)+10(100﹣x)=﹣10x+11200,由,解得40≤x≤240,(1)由题意可得,W=20(240﹣x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB32/T 1261-2020寿眉茶加工技术规程
- DB31/T 948-2015地下空间安全使用管理基本要求
- 【正版授权】 ISO/IEC 18584-1:2025 EN Information technology - Test methods for on-card biometric comparison applications - Part 1: General principles and specifications
- DB31/T 841-2014用人单位职业病危害现状评价技术导则
- DB31/T 790-2014家用和类似用途电器安装维修服务规范
- DB31/T 685-2019养老机构设施与服务要求
- DB31/T 319-2013活禽市场交易规范
- DB31/T 1181-2019天然饰面石材加工单位产品能源消耗限额
- DB31/ 283-2015户外广告设施设置技术规范
- 草原割草与草原文化传承考核试卷
- 2024年上海市高考语文真题现代文二《斑鸠》简析及相关常规题型归纳
- 七年级下册英语语法填空专项训练100题含答案5篇
- 配电室火灾应急处置预案
- 2024年高考英语考前押题密卷(全国卷1)(含答案与解析)
- 辽宁省盘锦市辽河油田实验中学2023-2024学年九年级下学期开学考试数学试题(原卷版)
- 中小学-预防性骚扰与性侵害-1-课件
- xx市体育中心设计说明
- 2024年江苏省南通市如皋市中考一模语文试题
- 2024-2030年中国纳米抗体药物行业运行现状及发展行情监测研究报告
- 2023年高考物理分题型多维刷题练专题19热学中的变质量气体问题(原卷版+解析)
- 如何唤醒孩子学习的内驱力
评论
0/150
提交评论