版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年吉林省长春汽车经济技术开发区八年级下册数学期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,已知△ABC,按以下步骤作图:①分别以B、C为圆心,以大于BC的长为半径作弧,两弧相交于两点M、N;②作直线MN交AB于点D,连接CD.若∠B=30°,∠A=55°,则∠ACD的度数为()A.65° B.60° C.55° D.45°2.如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC//BD//y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为(
)A.4 B.3 C.2 D.3.已知一次函数y=(2m+1)x﹣m﹣1的图象不经过第三象限,则m的取值范围是()A.m>﹣1 B.m<﹣1 C.m≥﹣1 D.m≤﹣14.如图,两地被池塘隔开,小明先在直线外选一点,然后测量出,的中点,并测出的长为.由此,他可以知道、间的距离为()A. B. C. D.5.直角梯形的一个内角为,较长的腰为6,一底为5,则这个梯形的面积为()A. B. C.25 D.或6.下列命题中,是真命题的是()A.平行四边形的对角线一定相等B.等腰三角形任意一条边上的高线、中线和角平分线都三线合一C.三角形的中位线平行于第三边并且等于它的一半D.三角形的两边之和小于第三边7.已知一次函数y=(k﹣2)x+k不经过第三象限,则k的取值范围是()A.k≠2 B.k>2 C.0<k<2 D.0≤k<28.如图,在△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DGFE是正方形.若DE=4cm,则AC的长为()A.4cm B.2cm C.8cm D.4cm9.下列所给图形中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.10.估计﹣÷2的运算结果在哪两个整数之间()A.0和1 B.1和2 C.2和3 D.3和411.对于反比例函数,下列说法不正确的是()A.点在它的图像上 B.当时,随的增大而增大C.它的图像在第二、四象限 D.当时,随的增大而减小12.下列等式从左到右的变形是因式分解的是()A.B.C.D.二、填空题(每题4分,共24分)13.如图,四边形ABCD是梯形,AD∥BC,AC=BD,且AC⊥BD,如果梯形ABCD的中位线长是5,那么这个梯形的高AH=___.14.如图,将边长为4的正方形纸片沿折叠,点落在边上的点处,点与点重合,与交于点,取的中点,连接,则的周长最小值是__________.15.若点(a,b)在一次函数y=2x-3的图象上,则代数式4a-2b-3的值是__________16.一个三角形的两边的长分别是3和5,要使这个三角形为直角三角形,则第三条边的长为_____.17.已知关于的方程的一个解为1,则它的另一个解是__________.18.如图,在平行四边形ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC=________
。三、解答题(共78分)19.(8分)如图,在菱形中,,垂足为点,且为边的中点.(1)求的度数;(2)如果,求对角线的长.20.(8分)如图,把矩形纸片ABCD置于直角坐标系中,AB∥x轴,BC∥y轴,AB=4,BC=3,点B(5,1)翻折矩形纸片使点A落在对角线DB上的H处得折痕DG.(1)求AG的长;(2)在坐标平面内存在点M(m,-1)使AM+CM最小,求出这个最小值;(3)求线段GH所在直线的解析式.21.(8分)已知BD是△ABC的角平分线,ED⊥BC,∠BAC=90°,∠C=30°.(1)求证:CE=BE;(2)若AD=3,求△ABC的面积.22.(10分)如图,小明在研究性学习活动中,对自己家所在的小区进行调查后发现,小区汽车入口宽AB为3.3m,在入口的一侧安装了停止杆CD,其中AE为支架.当停止杆仰起并与地面成60°角时,停止杆的端点C恰好与地面接触.此时CA为0.7m.在此状态下,若一辆货车高3m,宽2.5m,入口两侧不能通车,那么这辆货车在不碰杆的情况下,能从入口内通过吗?请你通过计算说明.(参考数据:≈1.7)23.(10分)如图,▱ABOC放置在直角坐标系中,点A(10,4),点B(6,0),反比例函数y=(x>0)的图象经过点C.(1)求该反比例函数的表达式.(2)记AB的中点为D,请判断点D是否在该反比例函数的图象上,并说明理由.(3)若P(a,b)是反比例函数y=的图象(x>0)的一点,且S△POC<S△DOC,则a的取值范围为_____.24.(10分)如图,在平行四边形中,对角线相交于点,于点.(1)用尺规作于点(要求保留作图痕迹,不要求写作法与证明);(2)求证:.25.(12分)已知:如图,四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积?26.为了庆祝新中国成立70周年,某校组织八年级全体学生参加“恰同学少年,忆峥嵘岁月”新中国成立70周年知识竞赛活动.将随机抽取的部分学生成绩进行整理后分成5组,50~60分()的小组称为“学童”组,60~70分()的小组称为“秀才”组,70~80分()的小组称为“举人”组,80~90分()的小组称为“进士”组,90~100分()的小组称为“翰林”组,并绘制了不完整的频数分布直方图如下,请结合提供的信息解答下列问题:(1)若“翰林”组成绩的频率是12.5%,请补全频数分布直方图;(2)在此次比赛中,抽取学生的成绩的中位数在组;(3)学校决定对成绩在70~100分()的学生进行奖励,若八年级共有336名学生,请通过计算说明,大约有多少名学生获奖?
参考答案一、选择题(每题4分,共48分)1、A【解析】
先根据题意得出MN是线段BC的垂直平分线,故可得出CD=BD,即∠B=∠BCD,再由∠B=30°、∠A=55°知∠ACB=180°-∠A-∠B=95°,根据∠ACD=∠ACB-∠BCD即可。【详解】解:根据题意得出MN是线段BC的垂直平分线,∵CD=BD,∴∠B=∠BCD=30°.∵∠B=30°,∠A=55°,∴∠ACB=180°-∠A-∠B=95°,∴∠ACD=∠ACB-∠BCD=65°,故选:A.【点睛】本题考查的是作图一基本作图,熟知线段垂直平分线的作法是解答此题的关键.2、B【解析】
首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC//BD//y轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出S△OAC,S△ABD的面积,再根据△OAC与△ABD的面积之和为,列出方程,求解得出答案.【详解】把x=1代入得:y=1,∴A(1,1),把x=2代入得:y=,∴B(2,),∵AC//BD//y轴,∴C(1,k),D(2,)∴AC=k-1,BD=-,∴S△OAC=(k-1)×1,S△ABD=(-)×1,又∵△OAC与△ABD的面积之和为,∴(k-1)×1+(-)×1=,解得:k=3;故答案为B.【点睛】:此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.3、D【解析】
由一次函数y=(2m+1)x﹣m﹣1的图象不经过第三象限,则2m+1<0,且﹣m﹣1≥0,解两个不等式即可得到m的取值范围.【详解】∵一次函数y=(2m+1)x﹣m﹣1的图象不经过第三象限,∴2m+1<0,且﹣m﹣1≥0,由2m+1<0,得:m;由﹣m﹣1≥0,得:m≤﹣1.所以m的取值范围是m≤﹣1.故选D.【点睛】本题考查了一次函数y=kx+b(k≠0,k,b为常数)的性质.它的图象为一条直线,当k>0,图象经过第一,三象限,y随x的增大而增大;当k<0,图象经过第二,四象限,y随x的增大而减小;当b>0,图象与y轴的交点在x轴的上方;当b=0,图象过坐标原点;当b<0,图象与y轴的交点在x轴的下方.4、D【解析】
根据三角形中位线定理解答.【详解】解:∵点M,N分别是AC,BC的中点,
∴AB=2MN=13(m),
故选:C.【点睛】本题考查了三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是关键.5、D【解析】试题分析:根据“直角梯形的一个内角为120°,较长的腰为6cm”可求得直角梯形的高,由于一底边长为5cm不能确定是上底还是下底,故要分两种情况讨论梯形的面积,根据梯形的面积公式=(上底+下底)×高,分别计算即可.解:根据题意可作出下图.BE为高线,BE⊥CD,即∠A=∠C=90°,∠ABD=120°,BD=6cm,∵AB∥CD,∠ABD=120°,∴∠D=60°,∴BE=6×sin60°=3cm;ED=6×cos60°=3cm;当AB=5cm时,CD=5+3=8cm,梯形的面积=cm2;当CD=5cm时,AB=5−3=2cm,梯形的面积=cm2;故梯形的面积为或,故选D.6、C【解析】
根据平行四边形的性质、等腰三角形的性质、中位线定理、三边关系逐项判断即可.【详解】解:A、平行四边形的对角线互相平分,说法错误,故A选项错误;
B、等边三角形同一条边上的高线、中线和对角的平分线三线合一,说法错误,故B选项错误;
C、三角形的中位线平行于第三边且等于它的一半,说法正确,故C选项正确;
D、三角形的两边之和大于第三边,说法错误,故D选项错误.
故选:C.【点睛】本题考查平行四边形的性质、等边三角形的相关性质、三角形的中位线定理、三角形的三边关系,解答关键是熟记相关的性质与判定.7、D【解析】
直线不经过第三象限,则经过第二、四象限或第一、二、四象限,当经过第二、四象限时,函数为正比例函数,k=0当经过第一、二、四象限时,,解得0<k<2,综上所述,0≤k<2。故选D8、D【解析】
根据三角形的中位线定理可得出BC=4,由AB=AC,可证明BG=CF=2,由勾股定理求出CE,即可得出AC的长.【详解】解:∵点D、E分别是边AB、AC的中点,∴DE=BC,∵DE=4cm,∴BC=8cm,∵AB=AC,四边形DEFG是正方形,∴DG=EF,BD=CE,在Rt△BDG和Rt△CEF,,∴Rt△BDG≌Rt△CEF(HL),∴BG=CF=2,∴EC=2,∴AC=4cm.故选D.【点睛】本题考查了正方形的性质、相似三角形的判定、勾股定理、等腰三角形的性质以及正方形的性质,是基础题,比较简单.9、C【解析】
利用中心对称图形与轴对称图形定义判断即可.【详解】解:A是中心对称图形,不是轴对称图形,故此选项不符合题意;B不是中心对称图形,是轴对称图形,故此选项不符合题意;C是中心对称图形,也是轴对称图形,故正确;D是中心对称图形,不是轴对称图形,故此选项不符合题意故选:C【点睛】此题考查了中心对称图形,轴对称图形,熟练掌握各自的性质是解本题的关键.10、D【解析】
先估算出的大致范围,然后再计算出÷2的大小,从而得到问题的答案.【详解】25<32<31,∴5<<1.原式=﹣2÷2=﹣2,∴3<﹣÷2<2.故选D.【点睛】本题主要考查的是二次根式的混合运算,估算无理数的大小,利用夹逼法估算出的大小是解题的关键.11、D【解析】
根据反比例函数图象的性质对各选项分析判断后利用排除法求解.【详解】A.∵=3,∴点(−3,3)在它的图象上,故本选项正确;B.k=−9<0,当x>0时,y随x的增大而增大,故本选项正确;C.k=−9<0,∴它的图象在第二、四象限,故本选项正确;D.k=−9<0,当x<0时,y随x的增大而增大,故本选项错误。故选D.【点睛】此题考查反比例函数的性质,解题关键在于根据反比例函数图象的性质进行分析12、C【解析】
直接利用因式分解的定义分析得出答案.【详解】解:A.,是单项式乘以单项式,故此选项错误;B.,从左到右的变形是整式的乘法,故此选项错误;C.,从左到右的变形是因式分解,故此选项正确;D.,没有分解成几个整式的积的形式,不是因式分解,故此项错误。故选:C【点睛】本题主要考查了因式分解的意义,正确把握因式分解的意义是解题关键.二、填空题(每题4分,共24分)13、1.【解析】
过点D作DF∥AC交BC的延长线于F,作DE⊥BC于E.可得四边形ACFD是平行四边形,根据平行四边形的性质可得AD=CF,再判定△BDF是等腰直角三角形,根据等腰直角三角形的性质求出AH=BF解答.【详解】如图,过点D作DF∥AC交BC的延长线于F,作DE⊥BC于E.则四边形ACFD是平行四边形,∴AD=CF,∴AD+BC=BF,∵梯形ABCD的中位线长是1,∴BF=AD+BC=1×2=10.∵AC=BD,AC⊥BD,∴△BDF是等腰直角三角形,∴AH=DE=BF=1,故答案为:1.【点睛】本题考查了梯形的中位线,等腰直角三角形的判定与性质,平行四边形的判定与性质,梯形的问题关键在于准确作出辅助线.14、【解析】
如图,取CD中点K,连接PK,PB,则CK=2,由折叠的性质可得PG=PC,GH=DC=4,PQ=PK,BP=PG,QG=2,要求△PGQ周长的最小值,只需求PQ+PG的最小值即可,即求PK+PB的最小值,观察图形可知,当K、P、B共线时,PK+PB的值最小,据此根据勾股定理进行求解即可得答案.【详解】如图,取CD中点K,连接PK,PB,则CK==2,∵四边形ABCD是正方形,∴∠ABC=90°,∵将边长为4的正方形ABCD纸片沿EF折叠,点C落在AB边上的点G处,点D与点H重合,CG与EF交于点P,取GH的中点Q,∴PG=PC,GH=DC=4,PQ=PK,∴BP=PG,QG=2,要求△PGQ周长的最小值,只需求PQ+PG的最小值即可,即求PK+PB的最小值,观察图形可知,当K、P、B共线时,PK+PB的值最小,此时,PK+PB=BK=,∴△PGQ周长的最小值为:PQ+PG+QG=PK+PB+QG=BK+QG=2+2,故答案为2+2.【点睛】本题考查了正方形的性质,轴对称图形的性质,直角三角形斜边中线的性质,综合性较强,难度较大,正确添加辅助线,找出PQ+PG的最小值是解题的关键.15、1【解析】
根据题意,将点(a,b)代入函数解析式即可求得2a-b的值,变形即可求得所求式子的值.【详解】∵点(a,b)在一次函数y=2x-1的图象上,∴b=2a-1,∴2a-b=1,∴4a-2b=6,∴4a-2b-1=6-1=1,故答案为:1.【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.16、4或【解析】
解:①当第三边是斜边时,第三边的长的平方是:32+52=34;②当第三边是直角边时,第三边长的平方是:52-32=25-9=16=42,故答案是:4或.17、【解析】
根据一元二次方程解的定义,将x=1代入原方程列出关于k的方程,通过解方程求得k值;最后根据根与系数的关系求得方程的另一根.【详解】解:将x=1代入关于x的方程x2+kx−1=0,
得:1+k−1=0
解得:k=2,
设方程的另一个根为a,
则1+a=−2,
解得:a=−1,
故方程的另一个根为−1.
故答案是:−1.【点睛】本题考查的是一元二次方程的解集根与系数的关系.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.18、【解析】
证出△ACD是等腰直角三角形,由勾股定理求出AD,即可得出BC的长.【详解】四边形ABCD为平行四边形,CD=AB=2,BC=AD,∠D=∠ABC=∠CAD=45°AC=CD=2,∠ACD=90°△ACD为等腰直角三角形∴BC=AD==.故答案是:.【点睛】考查了平行四边形的性质、勾股定理、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明△ACD是等腰直角三角形是解决问题的关键.三、解答题(共78分)19、(1);(2)【解析】
(1)根据线段垂直平分线的性质可得DB=AD,即可证△ADB是等边三角形,可得∠A=60°
(2)由题意可得∠DAC=30°,AC⊥BD,可得DO=2,AO=2,即可求AC的长.【详解】连接,(1)∵四边形是菱形∴∵是中点,∴∴∴是等边三角形∴.(2)∵四边形是菱形∴,,,∵∴,∴【点睛】本题考查了菱形的性质,熟练运用菱形性质解决问题是本题的关键.20、(1)AG=1.5;AM+CM最小值为;(3)【解析】试题分析:(1)根据折叠的性质可得AG=GH,设AG的长度为x,在Rt△HGB中,利用勾股定理求出x的值;(2)作点A关于直线y=-1的对称点A',连接CA'与y=-1交于一点,这个就是所求的点,求出此时AM+CM的值;(3)求出G、H的坐标,然后设出解析式,代入求解即可得出解析式.试题解析:(1)由折叠的性质可得,AG=GH,AD=DH,GH⊥BD,∵AB=4,BC=3,∴BD=,设AG的长度为x,∴BG=4-x,HB=5-3=2,在Rt△BHG中,GH2+HB2=BG2,x2+4=(4-x)2,解得:x=1.5,即AG的长度为1.5;(2)如图所示:作点A关于直线y=-1的对称点A',连接CA'与y=-1交于M点,∵点B(5,1),∴A(1,1),C(5,4),A'(1,-3),AM+CM=A'C=,即AM+CM的最小值为;(3)∵点A(1,1),∴G(2.5,1),过点H作HE⊥AD于点E,HF⊥AB于点F,如图所示,∴△AEH∽△DAB,△HFB∽△DAB,∴,,即,,解得:EH=,HF=,则点H(,),设GH所在直线的解析式为y=kx+b,则,解得:,则解析式为:.【点睛】本题考查了一次函数的综合应用,涉及了折叠的性质、勾股定理的应用、相似三角形的判定和性质以及利用待定系数法求函数解析式等知识,知识点较多,难度较大,解答本题的关键是掌握数形结合的思想.21、(1)见解析;(2)△ABC的面积=.【解析】
(1)根据直角三角形的性质和角平分线的定义证出∠C=∠DBC,然后根据等角对等边即可证出DC=DB,然后利用三线合一即可得出结论;(2)利用30°所对的直角边是斜边的一半即可求出BD和AB,从而求出AC,然后根据三角形的面积公式计算即可.【详解】(1)证明:∵∠A=90°,∠C=30°,∴∠ABC=60°,∵BD平分∠ABC,∴∠DBC=∠ABC=30°,∴∠C=∠DBC,∴DC=DB,∵DE⊥BC,∴EC=BE.(2)解:在Rt△ABD中,∵∠A=90°,AD=3,∠ABD=30°,∴BD=2AD=6,AB==3,∴DB=DC=6,∴AC=9,∴△ABC的面积=×=.【点睛】此题考查的是直角三角形的性质、等腰三角形的判定及性质和勾股定理,掌握30°所对的直角边是斜边的一半、等角对等边、三线合一和利用勾股定理解直角三角形是解决此题的关键.22、不能通过,理由见解析【解析】
直接利用已知得出CF,CG的长,再利用勾股定理得出CF的长进而得出答案.【详解】不能通过.如图,在AB之间找一点F,使BF=2.5m,过点F作GF⊥AB交CD于点G,∵AB=3.3m,CA=0.7m,BF=2.5m,∴CF=AB﹣BF+CA=1.5m,∵∠ECA=60°,∠CGF=30°∴CG=2CF=3m,∴GF=≈2.55(m),∵2.55<3∴这辆货车在不碰杆的情况下,不能从入口内通过.【点睛】此题主要考查了勾股定理的应用,正确得出CG的长是解题关键.23、(1)y=;(2)D点在反比例函数图象上;(3)2<a<4或4<a<8【解析】
根据题意可得,可得C点坐标,则可求反比例函数解析式
根据题意可得D点坐标,代入解析式可得结论.
由图象可发现,,的面积和等于▱ABCD的面积一半,即,分点P在OC上方和下方讨论,设,用a表示的面积可得不等式,可求a的范围.【详解】解:(1)∵ABOC是平行四边形∴AC=BO=6∴C(4,4)∵反比例函数y=(x>0)的图象经过点C.∴4=∴k=16∴反比例函数解析式y=(2)∵点A(10,4),点B(6,0),∴AB的中点D(8,2)当x=8时,y==2∴D点在反比例函数图象上.(3)根据题意当点P在OC的上方,作PF⊥y轴,CE⊥y轴设P(a,)S△COD=S▱ABOC﹣S△ACD﹣S△OBD∴S△COD=S▱ABOC=12∵S△POC<S△COD∴,∴a>2或a<﹣8(舍去)当点P在OC的下方,则易得4<a<8综上所述:2<a<4或4<a<8【点睛】本题考查了待定系数法解反比例函数解析式,反比例函数的系数的几
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淮阴工学院《机械设计基础》2021-2022学年第一学期期末试卷
- 淮阴工学院《国际工程管理》2023-2024学年第一学期期末试卷
- 生活用纸相关行业投资方案范本
- 保险监管相关保险服务相关行业投资方案范本
- 人造岗石树脂行业相关投资计划提议范本
- 变速操纵软轴行业相关投资计划提议范本
- 2024【瑞丰F000789546】智能冰柜定制合同
- 2024年全新二婚财产分割协议
- 2024年区域销售独家合作协议
- 2024年公司利润分配合同
- (新版)糖尿病知识竞赛考试题库300题(含答案)
- 《创意改善生活》课件 2024-2025学年湘美版(2024)初中美术七年级上册
- CHT 1027-2012 数字正射影像图质量检验技术规程(正式版)
- 走遍德国 A1(课堂PPT)
- 380V变频器招标技术文件2010
- 基于PLC的门禁系统的设计
- 第一章特殊教育概述-特殊教育概论(共4页)
- 报废农业机械回收确认表(样式)
- 机房精密空调维护验收报告
- 《数字信号处理》教案
- 铁科研微机控制直通式电空制动系统
评论
0/150
提交评论