专题05 一元一次方程(教师版)_第1页
专题05 一元一次方程(教师版)_第2页
专题05 一元一次方程(教师版)_第3页
专题05 一元一次方程(教师版)_第4页
专题05 一元一次方程(教师版)_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

知识点01:解一元一次方程【高频考点精讲】1.解一元一次方程的一般步骤(1)一般步骤:去分母、去括号、移项、合并同类项、系数化为1。(2)所有步骤目的:使方程逐渐向x=a形式转化。2.解一元一次方程时,应该先观察方程的形式和特点,如果有分母一般先去分母;如果既有分母又有括号,且括号外的项乘以括号内各项后能消去分母,就先去括号。3.求解“ax+bx=c”类型方程时,将方程左边按照合并同类项的方法并为一项,即(a+b)x=c,使方程逐渐转化为ax=b的最简形式,体现化归思想。将ax=b系数化为1时,首先弄清楚求x时,方程两边除以的是a还是b,尤其a为分数时;其次要准确判断符号,a、b同号x为正,a、b异号x为负。知识点02:由实际问题抽象出一元一次方程【高频考点精讲】1.“总量=各部分量的和”是列方程解应用题中一个基本的关系式,在此类问题中,首先表示出各部分的量和总量,然后利用它们之间的等量关系列方程;2.“表示同一个量的不同式子相等”是列方程解应用题中另一个基本关系式,也是列方程的一种基本方法。通过对同一个量从不同角度用不同的式子表示,进而列出方程。知识点03:一元一次方程的应用【高频考点精讲】1.销售问题:利润=售价﹣进价,利润率=×100%;2.工程问题:(1)工作量=人均效率×人数×时间;(2)如果一件工作分几个阶段完成,那么各阶段工作量的和=工作总量;3.行程问题:路程=速度×时间;4.水流航行问题:(1)顺水速度=静水速度+水流速度;(2)逆水速度=静水速度﹣水流速度。检测时间:90分钟试题满分:100分难度系数:0.66一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023•永州)关于x的一元一次方程2x+m=5的解为x=1,则m的值为()A.3 B.﹣3 C.7 D.﹣7解:∵x=1是关于x的一元一次方程2x+m=5的解,∴2×1+m=5,∴m=3,故选:A.2.(2分)(2023•光泽县模拟)我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐.问人数和车数各多少?设车x辆,根据题意,可列出的方程是()A.3x﹣2=2x+9 B.3(x﹣2)=2x+9 C. D.3(x﹣2)=2(x+9)解:设车x辆,根据题意得:3(x﹣2)=2x+9.故选:B.3.(2分)(2023•连云港)元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马x天可追上慢马,由题意得()A.= B.=﹣12 C.240(x﹣12)=150x D.240x=150(x+12)解:∵慢马先行12天,快马x天可追上慢马,∴快马追上慢马时,慢马行了(x+12)天.根据题意得:240x=150(x+12).故选:D.4.(2分)(2023•贵州)《孙子算经》中有这样一道题,大意为:今有100头鹿,每户分一头鹿后,还有剩余,将剩下的鹿按每3户共分一头,恰好分完,问:有多少户人家?若设有x户人家,则下列方程正确的是()A. B.3x+1=100 C. D.解:根据题意得:x+x=100.故选:C.5.(2分)(2023•日照)《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出9钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x,可列方程为()A.9x+11=6x+16 B.9x﹣11=6x﹣16 C.9x+11=6x﹣16 D.9x﹣11=6x+16解:根据题意得:9x﹣11=6x+16.故选:D.6.(2分)(2023•台湾)有一东西向的直线吊桥横跨溪谷,小维、阿良分别从西桥头、东桥头同时开始往吊桥的另一头笔直地走过去,如图所示,已知小维从西桥头走了84步,阿良从东桥头走了60步时,两人在吊桥上的某点交会,且交会之后阿良再走70步恰好走到西桥头,若小维每步的距离相等,阿良每步的距离相等,则交会之后小维再走多少步会恰好走到东桥头()A.46 B.50 C.60 D.72解:设交会之后小维再走x步会恰好走到东桥头,由题意得,,∴x=72,故选:D.7.(2分)(2023•新昌县模拟)《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安.问几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问多久后甲乙相逢?设乙出发x日,甲乙相逢,则可列方程()A. B. C. D.解:设乙出发x日,甲乙相逢,则甲出发(x﹣2)日,故可列方程为:+=1.故选:D.8.(2分)(2023•南充)《孙子算经》记载:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”(尺、寸是长度单位,1尺=10寸).意思是,现有一根长木,不知道其长短.用一根绳子去度量长木,绳子还剩余4.5尺;将绳子对折再度量长木,长木还剩余1尺.问长木长多少?设长木长为x尺,则可列方程为()A.(x+4.5)=x﹣1 B.(x+4.5)=x+1 C.(x﹣4.5)=x+1 D.(x﹣4.5)=x﹣1解:设长木长为x尺,∵用一根绳子去量一根木条,绳子剩余4.5尺,∴绳子长为(x+4.5)尺,∵绳子对折再量木条,木条剩余1尺,得方程为:(x+4.5)=x﹣1.故选:A.9.(2分)(2023•宿迁)古代名著《孙子算经》中有一题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?设有车x辆,则根据题意,可列出方程是()A.3(x+2)=2x﹣9 B.3(x+2)=2x+9 C.3(x﹣2)=2x﹣9 D.3(x﹣2)=2x+9解:设有x辆车,则可列方程:3(x﹣2)=2x+9.故选:D.10.(2分)(2023•枣庄)《算学启蒙》是我国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x天可以追上慢马,则下列方程正确的是()A.240x+150x=150×12 B.240x﹣150x=240×12 C.240x+150x=240×12 D.240x﹣150x=150×12解:依题意得:240x﹣150x=150×12.故选:D.二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2023•鼓楼区校级模拟)定义运算法则:a⊕b=a2+ab,例如3⊕2=32+3×2=15.若2⊕x=10,则x的值为3.解:∵2⊕x=10,∴22+2x=10,即4+2x=10,解得x=3.故答案为:3.12.(2分)(2023•德阳)在初中数学文化节游园活动中,被称为“数学小王子”的王小明参加了“智取九宫格”游戏比赛,活动规则是:在九宫格中,除了已经填写的三个数之外的每一个方格中,填入一个数,使每一横行、每一竖列以及两条对角线上的3个数之和分别相等,且均为m.王小明抽取到的题目如图所示,他运用初中所学的数学知识,很快就完成了这个游戏,则m=39.解:设九宫格中最中间的数为x,∵第1列中间数与第2行的最左侧的数重合,∴16+4=7+x,∴x=13,根据九宫格每一横行、每一竖列以及两条对角线上的3个数之和等于最中间数的三倍,∴m=3x=39,故答案为:39.13.(2分)(2023•伊通县四模)“用绳子测水井深度,如果将绳子折成三等份,井外余绳4尺:如果将绳子折成四等份,井外余绳1尺.问绳长、井深各是多少尺?”设井深为x尺,可列一元一次方程为3(x+4)=4(x+1).解:井深为x尺,由将绳三折测之,绳多4尺,可得绳长为3(x+4),由将绳四折测之,绳多1尺,可得绳长为4(x+1).由绳长相等,可得3(x+4)=4(x+1).故答案为:3(x+4)=4(x+1).14.(2分)(2023•余江区二模)我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间客房.设有x间客房,可列方程为:7x+7=9(x﹣1).解:根据题意得:7x+7=9(x﹣1),故答案为:7x+7=9(x﹣1).15.(2分)(2023•慈溪市一模)方程术是中国传统数学著作《九章算术》中最高的代数成就.《九章算术》中记载了这样一个问题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”译文:“相同时间内,走路快的人走100步,走路慢的人只走60步,若走路慢的人先走100步,走路快的人要走多少步才能追上?(注:步为长度单位)”,根据题意可求得走路快的人要走250步才能追上走路慢的人.解:设走路快的人要走x步才能追上,则走路慢的人走×60(步),根据题意得:×60+100=x,解得:x=250,则走路快的人要走250步才能追上走路慢的人.故答案为:250.16.(2分)(2023•柯桥区一模)甲、乙两个足球队连续进打对抗赛,规定胜一场得3分,平一场得1分,负一场得0分,共赛10场,甲队保持不败,得22分,甲队胜6场.解:设甲胜了x场,由题意:3x+(10﹣x)=22,解得x=6,甲队胜了6场,故答案为:6.17.(2分)(2023•吉林)《九章算术》中记载了一道数学问题,其译文为:有人合伙买羊,每人出5钱,还缺45钱;每人出7钱,还缺3钱,问合伙人数是多少?为解决此问题,设合伙人数为x人,可列方程为5x+45=7x+3.解:设合伙人数为x人,依题意,得:5x+45=7x+3.故答案为:5x+45=7x+3.18.(2分)(2023•未央区校级三模)请阅读下面的诗句:“栖树一群鸦,鸦树不知数,四只栖一树,五只没处去,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗中谈到的鸦为45只,树为10棵.解:设树有x棵依题意列方程:4x+5=5(x﹣1)解得:x=10所以树有10棵,鸦的个数为:10×4+5=45故答案为:45,1019.(2分)(2023•大连)我国古代著作《九章算术》中记载了这样一个问题:“今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何.”其大意是:今有人合伙买鸡,每人出9钱,会多出11钱;每人出6钱,又差16钱.问人数、鸡价各是多少.”设共有x人合伙买鸡,根据题意,可列方程为9x﹣11=6x+16.解:由题意得:9x﹣11=6x+16,故答案为:9x﹣11=6x+16.20.(2分)(2023•丽水)古代中国的数学专著《九章算术》中有一题:“今有生丝三十斤,干之,耗三斤十二两.今有干丝一十二斤,问生丝几何?”意思是:“今有生丝30斤,干燥后耗损3斤12两(古代中国1斤等于16两).今有干丝12斤,问原有生丝多少?”则原有生丝为斤.解:设原有生丝为x斤,x:12=30:(30﹣3),解得x=.故原有生丝为斤.故答案为:.三.解答题(共8小题,满分60分)21.(6分)(2023•浙江模拟)以下是欣欣解方程:的解答过程:解:去分母,得2(x+2)﹣3(2x﹣1)=1;……①去括号:2x+2﹣6x+3=1;…………………②移项,合并同类项得:﹣4x=﹣4;………………③解得:x=1.…………④(1)欣欣的解答过程在第几步开始出错?(请写序号即可)(2)请你完成正确的解答过程.解:(1)步骤①;(2)去分母,得2(x+2)﹣3(2x﹣1)=6;去括号:2x+4﹣6x+3=6;移项,合并同类项得:﹣4x=﹣1;解得:.22.(6分)(2023•衢州)小红在解方程时,第一步出现了错误:解:2×7x=(4x﹣1)+1,…(1)请在相应的方框内用横线划出小红的错误处.(2)写出你的解答过程.解:(1)如图:(2)去分母:2×7x=(4x﹣1)+6,去括号:14x=4x﹣1+6,移项:14x﹣4x=﹣1+6,合并同类项:10x=5,系数化1:x=.23.(8分)(2023•灞桥区校级模拟)列方程解应用题.某家具厂有60名工人,加工某种有一个桌面和四条桌腿的桌子,工人每天每人可以加工3个桌面或6个桌腿.分配多少工人加工桌面,多少工人加工桌腿,才能使每天生产的桌面和桌腿配套?解:设有x名工人加工桌面,则加工桌腿的有(60﹣x)名,根据题意得,4×3x=6×(60﹣x),解得:x=20,60﹣20=40,答:有20名工人加工桌面,40名工人加工桌腿.24.(8分)(2023•河北)某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投.计分规则如下:投中位置A区B区脱靶一次计分(分)31﹣2在第一局中,珍珍投中A区4次,B区2次.脱靶4次.(1)求珍珍第一局的得分;(2)第二局,珍珍投中A区k次,B区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k的值.解:(1)由题意可得:4×3+2×1+4×(﹣2)=6(分),答:珍珍第一局的得分为6分;(2)由题意可得:3k+3×1+(10﹣k﹣3)×(﹣2)=6+13,解得:k=6.∴k的值为6.25.(8分)(2023•临沂)大学生小敏参加暑期实习活动,与公司约定一个月(30天)的报酬是M型平板电脑一台和1500元现金.当她工作满20天后因故结束实习,结算工资时公司给了她一台该型平板电脑和300元现金.(1)这台M型平板电脑价值多少元?(2)小敏若工作m天,将上述工资支付标准折算为现金,她应获得多少报酬(用含m的代数式表示)?解:(1)设这台M型平板电脑价值x元,根据题意得:(x+1500)=x+300,解得:x=2100,∴这台M型平板电脑价值2100元;(2)由(1)知,一台M型平板电脑价值2100元,∴工作一个月,她应获得的报酬为2100+1500=3600(元),∴若工作m天,她应获得的报酬为=120m(元).26.(8分)(2023•北京)对联是中华传统文化的瑰宝,对联装裱后,如图所示,上、下空白处分别称为天头和地头,左、右空白处统称为边.一般情况下,天头长与地头长的比是6:4,左、右边的宽相等,均为天头长与地头长的和的.某人要装裱一副对联,对联的长为100cm,宽为27cm.若要求装裱后的长是装裱后的宽的4倍,求边的宽和天头长.解:设天头长为6xcm,地头长为4xcm,则左、右边的宽为xcm,根据题意得,100+(6x+4x)=4×[27+(6x﹣4x)],解得x=4,答:边的宽为4cm,天头长为24cm.27.(8分)(2023•重庆)某粮食生产基地为了落实在适宜地区开展双季稻中间季节再种一季油菜的号召,积极扩大粮食生产规模,计划用基地的甲、乙两区农田进行油菜试种,甲区的农田比乙区的农田多10000亩,甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同.(1)求甲、乙两区各有农田多少亩?(2)在甲、乙两区适宜试种的农田全部种上油菜后,为加强油菜的虫害治理,基地派出一批性能相同的无人机,对试种农田喷洒除虫药,由于两区地势差别,派往乙区的无人机架次是甲区的1.2倍(每架次无人机喷洒时间相同),喷洒任务完成后,发现派往甲区的每架次无人机比乙区的平均多喷洒亩,求派往甲区每架次无人机平均喷洒多少亩?解:(1)设乙区有农田x亩,则甲区有农田(x+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论