版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年贵州省毕节市梁才学校高三最后一模数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列说法正确的是()A.命题“,”的否定形式是“,”B.若平面,,,满足,则C.随机变量服从正态分布(),若,则D.设是实数,“”是“”的充分不必要条件2.定义在上的奇函数满足,若,,则()A. B.0 C.1 D.23.已知函数,若,,,则a,b,c的大小关系是()A. B. C. D.4.若双曲线:绕其对称中心旋转后可得某一函数的图象,则的离心率等于()A. B. C.2或 D.2或5.某四棱锥的三视图如图所示,记为此棱锥所有棱的长度的集合,则().A.,且 B.,且C.,且 D.,且6.一个正三角形的三个顶点都在双曲线的右支上,且其中一个顶点在双曲线的右顶点,则实数的取值范围是()A. B. C. D.7.若函数为自然对数的底数)在区间上不是单调函数,则实数的取值范围是()A. B. C. D.8.费马素数是法国大数学家费马命名的,形如的素数(如:)为费马索数,在不超过30的正偶数中随机选取一数,则它能表示为两个不同费马素数的和的概率是()A. B. C. D.9.已知,其中是虚数单位,则对应的点的坐标为()A. B. C. D.10.已知双曲线的一个焦点与抛物线的焦点重合,则双曲线的离心率为()A. B. C.3 D.411.阅读如图的程序框图,运行相应的程序,则输出的的值为()A. B. C. D.12.设函数的定义域为,命题:,的否定是()A., B.,C., D.,二、填空题:本题共4小题,每小题5分,共20分。13.“今有女善织,日益功疾,初日织五尺,今一月共织九匹三丈.”其白话意译为:“现有一善织布的女子,从第2天开始,每天比前一天多织相同数量的布,第一天织了5尺布,现在一个月(按30天计算)共织布390尺.”则每天增加的数量为____尺,设该女子一个月中第n天所织布的尺数为,则______.14.已知x,y>0,且,则x+y的最小值为_____.15.已知实数x,y满足(2x-y)2+4y16.已知单位向量的夹角为,则=_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的内角,,的对边分别为,,,.(1)若,证明:.(2)若,,求的面积.18.(12分)(本小题满分12分)已知椭圆C:x2a2+y(1)求椭圆C的标准方程;(2)过点A(1,0)的直线与椭圆C交于点M,N,设P为椭圆上一点,且OM+ON=t19.(12分)已知函数.(1)证明:函数在上存在唯一的零点;(2)若函数在区间上的最小值为1,求的值.20.(12分)已知椭圆C的离心率为且经过点(1)求椭圆C的方程;(2)过点(0,2)的直线l与椭圆C交于不同两点A、B,以OA、OB为邻边的平行四边形OAMB的顶点M在椭圆C上,求直线l的方程.21.(12分)在平面直角坐标系中,为直线上动点,过点作抛物线:的两条切线,,切点分别为,,为的中点.(1)证明:轴;(2)直线是否恒过定点?若是,求出这个定点的坐标;若不是,请说明理由.22.(10分)在四棱锥的底面是菱形,底面,,分别是的中点,.(Ⅰ)求证:;(Ⅱ)求直线与平面所成角的正弦值;(III)在边上是否存在点,使与所成角的余弦值为,若存在,确定点的位置;若不存在,说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
由特称命题的否定是全称命题可判断选项A;可能相交,可判断B选项;利用正态分布的性质可判断选项C;或,利用集合间的包含关系可判断选项D.【详解】命题“,”的否定形式是“,”,故A错误;,,则可能相交,故B错误;若,则,所以,故,所以C错误;由,得或,故“”是“”的充分不必要条件,D正确.故选:D.【点睛】本题考查命题的真假判断,涉及到特称命题的否定、面面相关的命题、正态分布、充分条件与必要条件等,是一道容易题.2、C【解析】
首先判断出是周期为的周期函数,由此求得所求表达式的值.【详解】由已知为奇函数,得,而,所以,所以,即的周期为.由于,,,所以,,,.所以,又,所以.故选:C【点睛】本小题主要考查函数的奇偶性和周期性,属于基础题.3、D【解析】
根据题意,求出函数的导数,由函数的导数与函数单调性的关系分析可得在上为增函数,又由,分析可得答案.【详解】解:根据题意,函数,其导数函数,则有在上恒成立,则在上为增函数;又由,则;故选:.【点睛】本题考查函数的导数与函数单调性的关系,涉及函数单调性的性质,属于基础题.4、C【解析】
由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,所以或,由离心率公式即可算出结果.【详解】由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,又双曲线的焦点既可在轴,又可在轴上,所以或,或.故选:C【点睛】本题主要考查了双曲线的简单几何性质,函数的概念,考查了分类讨论的数学思想.5、D【解析】
首先把三视图转换为几何体,根据三视图的长度,进一步求出个各棱长.【详解】根据几何体的三视图转换为几何体为:该几何体为四棱锥体,如图所示:所以:,,.故选:D..【点睛】本题考查三视图和几何体之间的转换,主要考查运算能力和转换能力及思维能力,属于基础题.6、D【解析】
因为双曲线分左右支,所以,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,,将其代入双曲线可解得.【详解】因为双曲线分左右支,所以,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,,将其代入双曲线方程得:,即,由得.故选:.【点睛】本题考查了双曲线的性质,意在考查学生对这些知识的理解掌握水平.7、B【解析】
求得的导函数,由此构造函数,根据题意可知在上有变号零点.由此令,利用分离常数法结合换元法,求得的取值范围.【详解】,设,要使在区间上不是单调函数,即在上有变号零点,令,则,令,则问题即在上有零点,由于在上递增,所以的取值范围是.故选:B【点睛】本小题主要考查利用导数研究函数的单调性,考查方程零点问题的求解策略,考查化归与转化的数学思想方法,属于中档题.8、B【解析】
基本事件总数,能表示为两个不同费马素数的和只有,,,共有个,根据古典概型求出概率.【详解】在不超过的正偶数中随机选取一数,基本事件总数能表示为两个不同费马素数的和的只有,,,共有个则它能表示为两个不同费马素数的和的概率是本题正确选项:【点睛】本题考查概率的求法,考查列举法解决古典概型问题,是基础题.9、C【解析】
利用复数相等的条件求得,,则答案可求.【详解】由,得,.对应的点的坐标为,,.故选:.【点睛】本题考查复数的代数表示法及其几何意义,考查复数相等的条件,是基础题.10、A【解析】
根据题意,由抛物线的方程可得其焦点坐标,由此可得双曲线的焦点坐标,由双曲线的几何性质可得,解可得,由离心率公式计算可得答案.【详解】根据题意,抛物线的焦点为,则双曲线的焦点也为,即,则有,解可得,双曲线的离心率.故选:A.【点睛】本题主要考查双曲线、抛物线的标准方程,关键是求出抛物线焦点的坐标,意在考查学生对这些知识的理解掌握水平.11、C【解析】
根据给定的程序框图,计算前几次的运算规律,得出运算的周期性,确定跳出循环时的n的值,进而求解的值,得到答案.【详解】由题意,,第1次循环,,满足判断条件;第2次循环,,满足判断条件;第3次循环,,满足判断条件;可得的值满足以3项为周期的计算规律,所以当时,跳出循环,此时和时的值对应的相同,即.故选:C.【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中解答中认真审题,得出程序运行时的计算规律是解答的关键,着重考查了推理与计算能力.12、D【解析】
根据命题的否定的定义,全称命题的否定是特称命题求解.【详解】因为:,是全称命题,所以其否定是特称命题,即,.故选:D【点睛】本题主要考查命题的否定,还考查了理解辨析的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、52【解析】
设从第2天开始,每天比前一天多织尺布,由等差数列前项和公式求出,由此利用等差数列通项公式能求出.【详解】设从第2天开始,每天比前一天多织d尺布,
则,
解得,即每天增加的数量为,
,故答案为,52.【点睛】本题主要考查等差数列的通项公式、等差数列的求和公式,意在考查利用所学知识解决问题的能力,属于中档题.14、1【解析】
处理变形x+y=x()+y结合均值不等式求解最值.【详解】x,y>0,且,则x+y=x()+y1,当且仅当时取等号,此时x=4,y=2,取得最小值1.故答案为:1【点睛】此题考查利用均值不等式求解最值,关键在于熟练掌握均值不等式的适用条件,注意考虑等号成立的条件.15、2【解析】
直接利用柯西不等式得到答案.【详解】根据柯西不等式:2x-y2+4y当2x-y=2y,即x=328故答案为:2.【点睛】本题考查了柯西不等式求最值,也可以利用均值不等式,三角换元求得答案.16、【解析】
因为单位向量的夹角为,所以,所以==.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】
(1)由余弦定理及已知等式得出关系,再由正弦定理可得结论;(2)由余弦定理和已知条件解得,然后由面积公式计算.【详解】解:(1)由余弦定理得,由得到,由正弦定理得.因为,,所以.(2)由题意及余弦定理可知,①由得,即,②联立①②解得,.所以.【点睛】本题考查利用正余弦定理解三角形.考查三角形面积公式,由已知条件本题主要是应用余弦定理求出边.解题时要注意对条件的分析,确定选用的公式.18、(1)x24+【解析】试题分析:本题主要考查椭圆的标准方程及其几何性质、直线与椭圆的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,先利用离心率、a2=b2+c2、四边形的面积列出方程,解出a和b的值,从而得到椭圆的标准方程;第二问,讨论直线MN的斜率是否存在,当直线MN的斜率存在时,直线方程与椭圆方程联立,消参,利用韦达定理,得到x1+x2、x1x试题解析:(1)∵e=22, ∴又S=12×2a×2b=4∴椭圆C的标准方程为x2(2)由题意知,当直线MN斜率存在时,设直线方程为y=k(x-1),M(x联立方程x24+因为直线与椭圆交于两点,所以Δ=16k∴x又∵OM∴因为点P在椭圆x24+即2k又∵|OM即|NM|<4化简得:13k4-5k2∵t2=1-当直线MN的斜率不存在时,M(1, 62∴t∈[-1, 考点:椭圆的标准方程及其几何性质、直线与椭圆的位置关系.19、(1)证明见解析;(2)【解析】
(1)求解出导函数,分析导函数的单调性,再结合零点的存在性定理说明在上存在唯一的零点即可;(2)根据导函数零点,判断出的单调性,从而可确定,利用以及的单调性,可确定出之间的关系,从而的值可求.【详解】(1)证明:∵,∴.∵在区间上单调递增,在区间上单调递减,∴函数在上单调递增.又,令,,则在上单调递减,,故.令,则所以函数在上存在唯一的零点.(2)解:由(1)可知存在唯一的,使得,即(*).函数在上单调递增.∴当时,,单调递减;当时,,单调递增.∴.由(*)式得.∴,显然是方程的解.又∵是单调递减函数,方程有且仅有唯一的解,把代入(*)式,得,∴,即所求实数的值为.【点睛】本题考查函数与导数的综合应用,其中涉及到判断函数在给定区间上的零点个数以及根据函数的最值求解参数,难度较难.(1)判断函数的零点个数时,可结合函数的单调性以及零点的存在性定理进行判断;(2)函数的“隐零点”问题,可通过“设而不求”的思想进行分析.20、(1)(2)【解析】
(1)根据椭圆的离心率、椭圆上点的坐标以及列方程,由此求得,进而求得椭圆的方程.(2)设出直线的方程,联立直线的方程和椭圆的方程,写出韦达定理.根据平行四边形的性质以及向量加法的几何意义得到,由此求得点的坐标,将的坐标代入椭圆方程,化简后可求得直线的斜率,由此求得直线的方程.【详解】(1)由椭圆的离心率为,点在椭圆上,所以,且解得,所以椭圆的方程为.(2)显然直线的斜率存在,设直线的斜率为,则直线的方程为,设,由消去得,所以,由已知得,所以,由于点都在椭圆上,所以,展开有,又,所以,经检验满足,故直线的方程为.【点睛】本小题主要考查根据椭圆的离心率和椭圆上一点的坐标求椭圆方程,考查直线和椭圆的位置关系,考查运算求解能力,属于中档题.21、(1)见解析(2)直线过定点.【解析】
(1)设出两点的坐标,利用导数求得切线的方程,设出点坐标并代入切线的方程,同理将点坐标代入切线的方程,利用韦达定理求得线段中点的横坐标,由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 女士长睡袍产品供应链分析
- 可移动建筑物出租行业市场调研分析报告
- 互联网法律服务行业营销策略方案
- 5G健康监测设备行业营销策略方案
- 供应链管理(SCM)行业经营分析报告
- 在线英语教育行业营销策略方案
- 蒸馏塔市场发展前景分析及供需格局研究预测报告
- 玻璃清洁制剂商业机会挖掘与战略布局策略研究报告
- 花盆托盘项目营销计划书
- 乡村影视拍摄基地行业经营分析报告
- QtC++程序设计-教学大纲
- 感染性心内膜炎-标准完整课件
- 重庆大学版信息科技五年级上册全册教案教学设计
- 《企业普法讲座》课件
- 《广告法概述》课件
- 引领学生了解物理科学的前沿与进展
- 2024政务服务综合窗口人员能力与服务规范考试试题
- 舆情应对课件
- 渔业资源增殖放流苗种采购投标方案
- 提高住院患者静脉输液规范使用率实施方案
- 水电安装施工规范全套
评论
0/150
提交评论