版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年浙江省杭州市江干区实验中学八年级下册数学期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论①MN∥BC,②MN=AM,下列说法正确的是()A.①②都对 B.①②都错C.①对②错 D.①错②对2.若使二次根式在实数范围内有意义,则的取值范围是()A. B. C. D.3.如图,一次函数,的图象与的图象相交于点,则方程组的解是()A. B. C. D.4.如果不等式组有解,那么m的取值范围是A. B. C. D.5.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为()A.0.7米 B.1.5米 C.2.2米 D.2.4米6.若一个正多边形的每一个外角都等于40°,则它是().A.正九边形 B.正十边形 C.正十一边形 D.正十二边形7.成都是一个历史悠久的文化名城,以下这些图形都是成都市民熟悉的,其中是中心对称图形的是()A. B. C. D.8.分式方程的解是().A.x=-5 B.x=5 C.x=-3 D.x=39.在□ABCD中,对角线AC与BD相交于点O,AC10,BD6,则下列线段不可能是□ABCD的边长的是()A.5 B.6 C.7 D.810.用同一种规格的下列多边形瓷砖不能镶嵌成平面图案的是()A.三角形 B.正方形 C.正五边形 D.正六边形11.如图,▱ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是()A.6 B.8 C.10 D.1212.若点P(a,2)在第二象限,则a的值可以是()A. B.0 C.1 D.2二、填空题(每题4分,共24分)13.气象观测小组进行活动,一号探测气球从海拔5米处出发,以1m/min速度上升,气球所在位置的海拔y(单位:m)与上升时间x(单位:min)的函数关系式为___.14.当x=______时,分式的值为0.15.计算:(π﹣3.14)0+3﹣1=_____.16.如图,在中,对角线,相交于点,添加一个条件判定是菱形,所添条件为__________(写出一个即可).17.当x_____时,分式有意义.18.如图,已知菱形的面积为24,正方形的面积为18,则菱形的边长是__________.三、解答题(共78分)19.(8分)如图,G是线段AB上一点,AC和DG相交于点E.(1)请先作出∠ABC的平分线BF,交AC于点F;(尺规作图,保留作图痕迹,不写作法与证明)(2)然后证明当:AD∥BC,AD=BC,∠ABC=2∠ADG时,DE=BF.20.(8分)在平面直角坐标系中,直线与轴、轴分别相交于A、B两点,求AB的长及△OAB的面积.21.(8分)如图,在中,于点D,E是的中点,若,求的长.22.(10分)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨.下表是去年该酒店豪华间某两天的相关记录:淡季旺季未入住房间数100日总收入(元)2400040000酒店豪华间有多少间?旺季每间价格为多少元?23.(10分)已知三角形纸片ABC的面积为41,BC的长为1.按下列步骤将三角形纸片ABC进行裁剪和拼图:第一步:如图1,沿三角形ABC的中位线DE将纸片剪成两部分.在线段DE上任意取一点F,在线段BC上任意取一点H,沿FH将四边形纸片DBCE剪成两部分;第二步:如图2,将FH左侧纸片绕点D旋转110°,使线段DB与DA重合;将FH右侧纸片绕点E旋转110°,使线段EC与EA重合,再与三角形纸片ADE拼成一个与三角形纸片ABC面积相等的四边形纸片.图1图2(1)当点F,H在如图2所示的位置时,请按照第二步的要求,在图2中补全拼接成的四边形;(2)在按以上步骤拼成的所有四边形纸片中,其周长的最小值为_________.24.(10分)人教版八年级下册第19章《一次函数》中“思考”:这两个函数的图象形状都是直线,并且倾斜程度相同,函数y=-6x的图象经过原点,函数y=-6x+5的图象经与y轴交于点(0,5),即它可以看作直线y=-6x向上平移5个单位长度而得到。比较一次函数解析式y=kx+bk≠0与正比例函数解析式y=kxk≠0,容易得出:一次函数y=kx+bk≠0的图象可由直线y=kx通过向上(或向下)平移b个单位得到(当b>0(结论应用)一次函数y=x-3的图象可以看作正比例函数的图象向平移个单位长度得到;(类比思考)如果将直线y=-6x的图象向右平移5个单位长度,那么得到的直线的函数解析式是怎样的呢?我们可以这样思考:在直线y=-6x上任意取两点A(0,0)和B(1,-6),将点A(0,0)和B(1,-6)向右平移5个单位得到点C(5,0)和D(6,-6),连接CD,则直线CD就是直线AB向右平移5个单位长度后得到的直线,设直线CD的解析式为:y=kx+bk≠0,将C(5,0)和D(6,-6)代入得到:5k+b=06k+b=-6解得k=-6b=30,所以直线CD的解析式为:y=-6x+30;①将直线y=-6x向左平移5个单位长度,则平移后得到的直线解析式为.②若先将直线y=-6x向左平移4个单位长度后,再向上平移5个单位长度,得到直线l,则直线l的解析式为(拓展应用)已知直线l:y=2x+3与直线关于x轴对称,求直线的解析式.25.(12分)先化简,再求值:,其中a=1+.26.如图1,四边形ABCD中,AD//BC,∠ADC=90°,AD=8,BC=CD=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ,设运动时间为t秒.(1)连接AN、CP,当t为何值时,四边形ANCP为平行四边形;(2)求出点B到AC的距离;(3)如图2,将ΔAQM沿AD翻折,得ΔAKM,是否存在某时刻t,使四边形AQMK为菱形,若存在,求t的值;若不存在,请说明理由
参考答案一、选择题(每题4分,共48分)1、A【解析】
根据题意得到四边形AMND为菱形,故可判断.【详解】解:∵四边形ABCD平行四边形,∴∠B=∠D=∠AMN,∴MN∥BC,∵AM=DA,∴四边形AMND为菱形,∴MN=AM.故①②正确.故选A.2、A【解析】
先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】∵二次根式在实数范围内有意义,∴x−50,解得x5.故选:A.【点睛】考查二次根式有意义的条件,掌握被开方数大于等于0是解题的关键.3、A【解析】
根据图象求出交点P的坐标,根据点P的坐标即可得出答案.【详解】解:∵由图象可知:一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2的交点P的坐标是(-2,3),∴方程组的解是,故选A.【点睛】本题考查了对一次函数与二元一次方程组的关系的理解和运用,主要考查学生的观察图形的能力和理解能力,题目比较典型,但是一道比较容易出错的题目.4、C【解析】
在数轴上表示两个不等式的解集,若不等式组有解,则有公共部分,可求得m的取值范围.【详解】在数轴上分析可得,不等式组有解,则两个不等式有公共解,那么m的取值范围是.故选:C【点睛】本题考核知识点:不等式组的解.解题关键点:理解不等式组的解的意义.5、C【解析】
在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.【点睛】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.6、A【解析】
根据多边形的外角和是360度即可求得外角的个数,即多边形的边数.【详解】解:∵360÷40=1,
∴这个正多边形的边数是1.
故选:A.【点睛】本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.7、C【解析】
根据中心对称图形的概念判断即可.【详解】解:A、B、D中的图形都不是中心对称图形,C中图形是中心对称图形;故选:C.【点睛】本题考查的是中心对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,这个图形就叫做中心对称图形.8、A【解析】
观察可得最简公分母是(x+1)(x-1),方程两边乘以最简公分母,可以把分式方程化为整式方程,再求解.【详解】方程两边同乘以(x+1)(x-1),
得3(x+1)=2(x-1),
解得x=-5.
经检验:x=-5是原方程的解.
故选A..【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.9、D【解析】
根据平行四边形的性质求出OA、OB,根据三角形的三边关系定理得到OA-OB<AB<OA+OB,代入求出即可.【详解】如图:,∵四边形ABCD是平行四边形,AC=10,BD=6,∴OA=OC=5,OD=OB=3,在△OAB中,OA−OB<AB<OA+OB,∴5−3<AB<5+3,即2<AB<8.同理可得AD、CD、BC的取值范围和AB相同.故选D.【点睛】本题主要考查三角形的三边关系和平行四边形的性质.牢记三角形的三边关系和平行四边形的性质是解题的关键.10、C【解析】
几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角,据此逐项判断即可.【详解】解:A、任意三角形的内角和是180°,放在同一顶点处6个即能镶嵌成平面图案;B、正方形的每个内角是90°,能整除360°,即能镶嵌成平面图案;C、正五边形每个内角是(5-2)×180°÷5=108°,不能整除360°,故不能镶嵌成平面图案;D、正六边形每个内角是(6-2)×180°÷6=120°,能整除360°,即能镶嵌成平面图案,故选:C.【点睛】本题考查平面镶嵌,围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角即能镶嵌成平面图案.11、C【解析】
由平行四边形的性质得出DC=AB=4,AD=BC=1,由线段垂直平分线的性质得出AE=CE,得出△CDE的周长=AD+DC,即可得出结果.【详解】∵四边形ABCD是平行四边形,∴DC=AB=4,AD=BC=1.∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=1+4=2.故选C.【点睛】本题考查了平行四边形的性质、线段垂直平分线的性质、三角形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.12、A【解析】
根据第二象限内点的横坐标是负数判断.【详解】解:∵点P(a,1)在第二象限,∴a<0,∴-1、0、1、1四个数中,a的值可以是-1.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题(每题4分,共24分)13、y=x+1.【解析】
直接利用原高度+上升的时间×1=海拔高度,进而得出答案.【详解】气球所在位置的海拔y(单位:m)与上升时间x(单位:min)的函数关系式为:y=x+1.故答案为:y=x+1.【点睛】此题主要考查了函数关系式,正确表示出上升的高度是解题关键.14、1.【解析】
直接利用分式的值为零则分子为零,分母不为零进而得出答案.【详解】解:∵分式的值为0,
∴1x-4=0且x-1≠0,
解得:x=1.
故答案为:1.【点睛】本题考查分式的值为零的条件,正确把握分式的定义是解题关键.15、【解析】
根据零指数幂和负指数幂运算法则进行计算即可得答案.【详解】原式=1+=.故答案为【点睛】主要考查了零指数幂,负指数幂的运算.负指数为正指数的倒数;任何非0数的0次幂等于1.16、AD=AB【解析】
根据菱形的判定定理即可求解.【详解】∵四边形ABCD为平行四边形,所以可以添加AD=AB,即可判定是菱形,故填:AD=AB.【点睛】此题主要考查菱形的判定,解题的关键是熟知菱形的判定定理.17、≠.【解析】
要使分式有意义,分式的分母不能为1.【详解】因为4x+5≠1,所以x≠-.故答案为≠−.【点睛】解此类问题,只要令分式中分母不等于1,求得x的取值范围即可.18、1【解析】
根据正方形的面积可用对角线进行计算解答即可.【详解】解:如图,连接AC、BD,相交于点O,∵正方形AECF的面积为18,∴AC=,∴AO=3,∵菱形ABCD的面积为24,∴BD=,∴BO=4,∴在Rt△AOB中,.故答案为:1.【点睛】此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.三、解答题(共78分)19、(1)见解析;(2)见解析.【解析】
(1)根据角平分线的作图方法作图即可;(2)由题意易证△ADE≌△CBF推出DE=BF.【详解】(1)解:以B为圆心、适当长为半径画弧,交AB、BC于M、N两点,分别以M、N为圆心、大于MN长为半径画弧,两弧相交于点P,过B、P作射线BF交AC于F.(2)证明如下:∵AD∥BC,∴∠DAC=∠C.∵BF平分∠ABC,∴∠ABC=2∠FBC,又∵∠ABC=2∠ADG,∴∠D=∠FBC,在△ADE与△CBF中,,∴△ADE≌△CBF(ASA),∴DE=BF.【点睛】本题考查的是全等三角形的判定定理以及基本作图的有关知识,难度一般.20、,1【解析】
根据两点距离公式、三角形的面积公式求解即可.【详解】解:令y=0,解得令x=0,解得∴A、B两点坐标为(3,0)、(0,6)∴∴故答案为:,1.【点睛】本题考查了直线解析式的几何问题,掌握两点距离公式、三角形的面积公式是解题的关键.21、DE=2.5.【解析】
利用勾股定理列式求出AC,再根据直角三角形斜边上的中线等于斜边的一半解答.【详解】∵,∴,∵E是的中点,∴.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.22、该酒店豪华间有50间,旺季每间价格为800元.【解析】
根据题意可以列出相应的方程组,进而求得该酒店豪华间的间数和旺季每间的价格;【详解】设淡季每间的价格为x元,酒店豪华间有y间,,解得,,∴x+13x=600+13×600=800,答:该酒店豪华间有50间,旺季每间价格为800元;【点睛】此题考查二元一次方程组的应用,解题关键在于理解题意列出方程组.23、21【解析】
(1)利用旋转的旋转即可作出图形;(2)先求出的边长边上的高为,进而求出与间的距离为,再判断出最小时,拼成的四边形的周长最小,即可得出结论.【详解】(1)∵DE是△ABC的中位线,∴四边形BDFH绕点D顺时针旋转,点B和点A重合,四边形CEFH绕点E逆时针旋转,点C和点A重合,∴补全图形如图1所示,(2)∵△ABC的面积是41,BC=1,∴点A到BC的距离为12,∵DE是△ABC的中位线,∴平行线DE与BC间的距离为6,由旋转知,∠DAH''=∠B,∠CAH'=∠C,∴∠DAH''+∠BAC+∠CAH'=110°,∴点H'',A,H'在同一条直线上,由旋转知,∠AEF'=∠CEF,∴∠AEF'+∠CEF'=∠CEF+∠CEF'=110°,∴点F,E,F'在同一条直线上,同理:点F,D,F''在同一条直线上,即:点F',F''在直线DE上,由旋转知,AH''=BH,AH'=CH,DF''=DF,EF'=EF,F''H''=FH=F'H',∴F'F''=2DE=BC=H'H'',∴四边形F'H'H''F''是平行四边形,∴▱F'H'H''F''的周长为2F'F''+2F'H'=4DE+2FH=2BC+2FH=16+2FH,∵拼成的所有四边形纸片中,其周长的最小时,FH最小,即:FH⊥BC,∴FH=6,∴周长的最小值为16+2×6=21,故答案为21.【点睛】此题是四边形综合题,主要考查了旋转的旋转和作图,判断三点共线的方法,平行四边形的判断和性质,判断出四边形是平行四边形是解本题的关键.24、【结论应用】y=x,下,1;【类比思考】①y=-6x-10;②y=-6x-3;【拓展应用】y=-2x-1.【解析】【结论应用】根据题目材料中给出的结论即可求解;【类比思考】①在直线y=-6x上任意取两点A(0,0)和B(1,-6),将点A和B向左平移5个单位得到点C、D,根据点的平移规律得到点C、D的坐标.设直线CD的解析式为:y=kx+b(k≠0),利用待定系数法即可求出直线CD的解析式;②在直线y=-6x上任意取两点A(0,0)和B(1,-6),将点A和B向左平移4个单位长度,再向上平移5个单位长度得到点C、D,根据点的平移规律得到点C、D的坐标.设直线CD的解析式为:y=kx+b(k≠0),利用待定系数法即可求出直线CD的解析式;【拓展应用】在直线l:y=2x+1上任意取两点A(0,1)和B(1,5),作点A和B关于x轴的对称点C、D,根据关于x轴对称的点的规律得到C、D的坐标.设直线CD的解析式为:y=kx+b(k≠0),利用待定系数法即可求出直线CD的解析式.【详解】解:【结论应用】一次函数y=x-1的图象可以看作正比例函数y=x的图象向下平移1个单位长度而得到.
故答案为y=x,下,1;
【类比思考】①在直线y=-6x上任意取两点A(0,0)和B(1,-6),
将点A(0,0)和B(1,-6)向左平移5个单位得到点C(-5,0)和D(-4,-6),连接CD,则直线CD就是直线AB向左平移5个单位长度后得到的直线,设直线CD的解析式为:y=kx+b(k≠0),
将C(-5,0)和D(-4,-6)代入得到:-5k+b=解得k=-6b=-30,
所以直线CD的解析式为:y=-6x-10.
故答案为y=-6x-10;
②在直线y=-6x上任意取两点A(0,0)和B(1,-6),
将点A(0,0)和B(1,-6)向左平移4个单位长度,再向上平移5个单位长度得到点C(-4,5)和D(-1,-1),连接CD,则直线CD就是直线AB向左平移4个单位长度,再向上平移5个单位长度后得到的直线,
设直线CD的解析式为:y=kx+b(k≠0),
将C(-4,5)和D-4k+b解得k=-6b=-19
所以直线l的解析式为:y=-6x-3.
故答案为y=-6x-3;
【拓展应用】在直线l:y=2x+1上任意取两点A(0,1)和B(1,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年项目启动资金垫付合同
- 2024年特别版:生物医药研发与临床试验合同
- 2025版腻子产品市场准入与资质审核合同3篇
- 2024年货运物流信息化管理服务合同范本3篇
- 2024年联盟商业保密合同
- 2025版新能源汽车制造职业健康安全与环境管理体系协议3篇
- 二零二五年度仿绿植草坪施工与生态园林养护合同6篇
- 2024年版钟点工服务合同3篇
- 2024年环保处理设施施工安装及性能保证合同2篇
- 2024年环保设备购置及安装合同
- 2024年国家公务员考试《行测》真题(行政执法)
- 烟花爆竹安全生产管理人员考试题库附答案(新)
- 国有企业外派董监事、高管人员管理办法
- 寒假作业一年级上册《数学每日一练》30次打卡
- 2025届北京市海淀区数学六年级第一学期期末联考试题含解析
- 假发购销合同模板
- 第四届全国新能源汽车关键技术大赛决赛考试题库-下(判断题)
- 职业技术学院《茶艺》课程标准
- 2024-2025学年北京市海淀区数学三上期末教学质量检测试题含解析
- 敏捷开发与Scrum考核试卷
- 2025届江苏省连云港市东海县数学八上期末学业质量监测试题含解析
评论
0/150
提交评论