2024年陕西省重点中学八年级下册数学期末综合测试试题含解析_第1页
2024年陕西省重点中学八年级下册数学期末综合测试试题含解析_第2页
2024年陕西省重点中学八年级下册数学期末综合测试试题含解析_第3页
2024年陕西省重点中学八年级下册数学期末综合测试试题含解析_第4页
2024年陕西省重点中学八年级下册数学期末综合测试试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年陕西省重点中学八年级下册数学期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下列四边形中,不属于轴对称图形的是()A.平行四边形 B.矩形 C.菱形 D.正方形2.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,下列条件中,不能判断这个平行四边形是菱形的是()A.AB=AD B.∠BAC=∠DAC C.∠BAC=∠ABD D.AC⊥BD3.如图,正方形ABCD,点E、F分别在AD,CD上,BG⊥EF,点G为垂足,AB=5,AE=1,CF=2,则BG的长为()A. B.5 C. D.4.下列各式从左到右的变形属于因式分解的是()A. B.C. D.5.代数式在实数范围内有意义,实数取值范围是()A. B. C. D.6.如图,在正方形中,分别以点,为圆心,长为半径画弧,两弧相交于点,连接,得到,则与正方形的面积比为()A.1:2 B.1:3 C.1:4 D.7.在1x,3x+2,2x-6π,a-1A.1 B.2 C.3 D.48.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元与上网时间x(h)的函数关系如图所示,则下列判断错误的是A.每月上网时间不足25h时,选择A方式最省钱 B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱 D.每月上网时间超过70h时,选择C方式最省钱9.已知不等式的解集是,下列各图中有可能是函数的图象的是()A. B.C. D.10.已知、是一次函数图象上的两个点,则与的大小关系为()A. B. C. D.不能确定与的大小11.要使分式有意义,x的值不能等于()A.-1 B.0 C.1 D.±112.如图,Rt△ABC中,∠C=90°,AB=10,BC=8,将△ABC折叠,使B点与AC的中点D重合,折痕为EF,则线段BF的长是()A. B.2 C. D.二、填空题(每题4分,共24分)13.老师对甲、乙两人的五次数学测验成绩进行统计,得出两人五次测验成绩的平均分均为90分,方差分别是S甲2=17,S乙2=1.则成绩比较稳定的是(填“甲”、“乙”中的一个).14.一次函数与轴的交点坐标为__________.15.如图,在中,,以顶点为圆心,适当长为半径画弧,分别交,于点,,再分别以点,为圆心,大于的长为半径画弧,两弧交于点,作射线交于点,若,,则的值是__________.16.如图,正方形ABCD的边长为6,点E,F分别在边AB,BC上,若F是BC的中点,且∠EDF=45°,则BE的长为_______.17.若-,则的取值范围是__________.18.如图,在RtΔABC中,∠ACB=90°,D是AB的中点,若∠A=26三、解答题(共78分)19.(8分)八年级下册教材第69页习题14:四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.求证:AE=EF.这道题对大多数同学来说,印象深刻数学课代表在做完这题后,她把这题稍作改动,如图,四边形ABCD是正方形,点E是边BC的三等分点,∠AEF=90°,且EF交正方形外角的平分线CF于点F,那么AE=EF还成立吗?如果成立,给予证明,如果不成立,请说明理由.20.(8分)已知:如图,在中,延长到,使得.连结,.(1)求证:;(2)请在所给的图中,用直尺和圆规作点(不同于图中已给的任何点),使以,,,为顶点的四边形是平行四边形(只作一个,保留痕迹,不写作法).21.(8分)如图,在菱形ABCD中,AB=4cm,∠BAD=60°.动点E、F分别从点B、D同时出发,以1cm/s的速度向点A、C运动,连接AF、CE,取AF、CE的中点G、H,连接GE、FH.设运动的时间为ts(0<t<4).(1)求证:AF∥CE;(2)当t为何值时,四边形EHFG为菱形;(3)试探究:是否存在某个时刻t,使四边形EHFG为矩形,若存在,求出t的值,若不存在,请说明理由.22.(10分)已知:如图,平面直角坐标系中,,,点C是x轴上一点,点D为OC的中点.(1)求证:BD∥AC;(2)若点C在x轴正半轴上,且BD与AC的距离等于2,求点C的坐标;(3)如果于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.23.(10分)工艺商场以每件元购进一批工艺品.若按每件元销售,工艺商场每天可售出该工艺品件.若每件工艺品降价元,则每天可多售出工艺品件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?24.(10分)移动营业厅推出两种移动电话计费方式:方案一,月租费用15元/元,本地通话费用0.2元/分钟,方案二,月租费用0元/元,本地通话费用0.3元/分钟.(1)以x表示每个月的通话时间(单位:分钟),y表示每个月的电话费用(单位:元),分别表示出两种电话计费方式的函数表达式;(2)问当每个月的通话时间为300分钟时,采用那种电话计费方式比较合算?25.(12分)先化简:(1﹣)•,然后a在﹣1,0,1三个数中选一个你认为合适的数代入求值.26.如图,在平面直角坐标系中,两点分别是轴和轴正半轴上两个动点,以三点为顶点的矩形的面积为24,反比例函数(为常数且)的图象与矩形的两边分别交于点.(1)若且点的横坐标为3.①点的坐标为,点的坐标为(不需写过程,直接写出结果);②在轴上是否存在点,使的周长最小?若存在,请求出的周长最小值;若不存在,请说明理由.(2)连接,在点的运动过程中,的面积会发生变化吗?若变化,请说明理由,若不变,请用含的代数式表示出的面积.

参考答案一、选择题(每题4分,共48分)1、A【解析】

根据轴对称图形的定义:轴对称图形,是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,即可判定平行四边形不是轴对称图形,矩形、菱形、正方形都是.【详解】根据轴对称图形的定义,可得A选项,平行四边形不符合轴对称图形定义;B选项,矩形符合定义,是轴对称图形;C选项,菱形符合定义,是轴对称图形;D选项,正方形符合定义,是轴对称图形;故答案为A.【点睛】此题主要考查轴对称图形的理解,熟练掌握,即可解题.2、C【解析】

根据菱形的判定定理分别进行分析即可.【详解】A、由邻边相等的平行四边形是菱形,A选项可以判断这个平行四边形是菱形B、由AB//CD可得∠BAC=∠DCA,及∠BAC=∠DAC可得∠DAC=∠DCA可得AD=CD由邻边相等的平行四边形是菱形,B选项可以判断这个平行四边形是菱形C、由∠BAC=∠ABD可得OA=OB,则AC=BD,可得这个四边形是矩形,C选项不可以判断这个平行四边形是菱形D、由对角线互相垂直的平行四边形是菱形,D选项可以判断这个平行四边形是菱形故答案选C【点睛】本题考查了菱形的判定定理,熟练掌握菱形的判定定理是解题的关键.3、C【解析】

如图,连接BE、BF.首先利用勾股定理求出EF,再根据S△BEF=•EF•BG=S正方形ABCD-S△ABE-S△BCF-S△DEF,列出方程即可解决问题.【详解】如图,连接BE、BF.∵四边形ABCD是正方形,∴AB=BC=CD=AD=5,∵AE=1,CF=2,∴DE=4,DF=3,∴EF==5,∵S△BEF=•EF•BG=S正方形ABCD-S△ABE-S△BCF-S△DEF,∴•5•BG=25-•5•1-•5•2-•3•4,∴BG=,故选C.【点睛】本题考查正方形的性质、勾股定理,三角形的面积等知识,解题的关键是学会添加常用辅助线,学会利用分割法求三角形面积,学会构建方程解决问题,属于中考常考题型.4、D【解析】

根据因式分解的定义依次判断各项即可解答.【详解】选项A,是整式的乘法运算,不是因式分解;选项B,该等式右边没有化为几个整式的乘积形式,不是因式分解;选项C,该等式右边没有化为几个整式的乘积形式,不是因式分解;选项D,符合因式分解的定义,是因式分解.故选D.【点睛】本题考查了因式分解的定义,熟练运用因式分解的定义是解决问题的关键.5、A【解析】

根据分数有意义的条件和二次根式有意义的条件,得出不等式,求解即可.【详解】由题意得,解得x>2,故选:A.【点睛】本题考查了分数有意义的条件和二次根式有意义的条件,掌握知识点是解题关键.6、C【解析】

由作图可得知△BEC是等边三角形,可求出∠ABE=30°,进而可求出△ABE边AB上的高,再根据三角形和正方形的面积公式求出它们的面积比即可.【详解】根据作图知,BE=CE=BC,∴△BEC是等边三角形,∴∠EBC=60°,∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∴∠ABE=∠ABC-∠EBC=90°-60°=30°,设AB=BC=a,过点E作EF⊥AB于点F,如图,则EF=BE=a,∴.故选C.【点睛】此题主要考查了等边三角形的判定以及正方形的性质,熟练掌握有关性质是解题的关键.7、B【解析】

判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:1x,a-故选:B.【点睛】考查了分式的定义,一般地,如果A,B表示两个整式,并且B中含有字母,那么式子AB8、D【解析】

A、观察函数图象,可得出:每月上网时间不足25

h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,yA与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时yA的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,yB与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时yB的值,将其与120比较后即可得出结论D错误.综上即可得出结论.【详解】A、观察函数图象,可知:每月上网时间不足25

h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、设当x≥25时,yA=kx+b,将(25,30)、(55,120)代入yA=kx+b,得:,解得:,∴yA=3x-45(x≥25),当x=35时,yA=3x-45=60>50,∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,yB=mx+n,将(50,50)、(55,65)代入yB=mx+n,得:,解得:,∴yB=3x-100(x≥50),当x=70时,yB=3x-100=110<120,∴结论D错误.故选D.【点睛】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.9、A【解析】

不等式mx+n>0的解集为直线y=mx+n落在x轴上方的部分对应的x的取值范围是x>-2,根据图象判断即可求解.【详解】解:A、不等式mx+n>0的解集是x>-2,故选项正确;

B、不等式mx+n>0的解集是x<-2,故选项错误;

C、不等式mx+n>0的解集是x>2,故选项错误;

D、不等式mx+n>0的解集是x<2,故选项错误.

故选:A.【点睛】本题考查一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=mx+n的值大于0的自变量x的取值范围.10、C【解析】

先根据一次函数中k=-1判断出函数的增减性,再根据-3<1进行解答即可.【详解】解:∵一次函数中k=-1<0,

∴y随x的增大而减小,

∵-3<1,

∴y1>y1.故选:C.【点睛】本题考查一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数的增减性是解题的关键.11、C【解析】

根据分式有意义的条件:分母不等于0;【详解】解:要使分式有意义,则,故故选:C【点睛】考查分式有意义的条件,熟练掌握分式有意义的条件:分母不等于0;是解题的关键.12、D【解析】

根据题意可得:,在中,根据勾股定理可列出方程,解方程可得BF的长.【详解】解:,D是AC中点折叠设在中,故选D.【点睛】本题考查了翻折问题,勾股定理的运用,关键是通过勾股定理列出方程.二、填空题(每题4分,共24分)13、乙.【解析】试题解析:∵S甲2=17,S乙2=1,1<17,∴成绩比较稳定的是乙.考点:方差.14、【解析】

令y=0,即可求出交点坐标.【详解】令y=0,得x=1,故一次函数与x轴的交点为故填【点睛】此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.15、1【解析】

过点D作DE⊥BC于E,根据角平分线的作法可知CD平分∠ACB,然后根据角平分线的性质可得DE=AD=3,然后根据三角形的面积公式求面积即可.【详解】解:过点D作DE⊥BC于E由题意可知:CD平分∠ACB∵∴DE=AD=3∵∴=故答案为:1.【点睛】此题考查的是用尺规作图作角平分线和角平分线的性质,掌握角平分线的作法和角平分线的性质是解决此题的关键.16、4【解析】

延长F至G,使CG=AE,连接DG,由SAS证明△ADE≌△CDG,得出DE=DG,∠ADE=∠CDG,再证明△EDF≌△GDF,得出EF=GF,设AE=CG=x,则EF=GF=3+x,在Rt△BEF中,由勾股定理得出方程,解方程得出AE=2,从而求得BE的长即可.【详解】解:延长F至G,使CG=AE,连接DG、EF,如图所示:∵四边形ABCD是正方形,∴AD=AB=BC=CD=6,∠A=∠B=∠DCF=∠ADC=90°,∴∠DCG=90°,在△ADE和△CDG中,AE=CG∠A=∠DCG=∴△ADE≌△CDG(SAS),∴DE=DG,∠ADE=∠CDG,∴∠EDG=∠CDE+∠CDG=∠CDE+∠ADE=90°,∵∠EDF=45°,∴∠GDF=45°,在△EDF和△GDF中,DE=DG∠EDF=∠GDF∴△EDF≌△GDF(SAS),∴EF=GF,∵F是BC的中点,∴BF=CF=3,设AE=CG=x,则EF=GF=CF+CG=3+x,在Rt△BEF中,由勾股定理得:32解得:x=2,即AE=2,∴BE=AB-AE=6-2=4.【点睛】此题考查了正方形的性质,全等三角形的判定与性质以及勾股定理,利用了方程的思想,证明三角形全等是解本题的关键.17、【解析】

利用二次根式的性质()及绝对值的性质化简(),即可确定出x的范围.【详解】解:∵,∴.∴,即.故答案为:.【点睛】本题考查利用二次根式的性质化简.熟练掌握二次根式的性质和绝对值的性质是解决此题的关键.18、52【解析】

根据直角三角形的性质得AD=CD,由等腰三角形性质结合三角形外角性质可得答案.【详解】∵∠ACB=90°,D是AB上的中点,∴CD=AD=BD,∴∠DCA=∠A=26°,∴∠BDC=2∠A=52°.故答案为52.【点睛】此题考查了直角三角的性质及三角形的外角性质,掌握直角三角形斜边中线等于斜边一半的性质是解题的关键.三、解答题(共78分)19、成立,理由见解析.【解析】

取AB的三等分点,连接GE,由点E是边BC的三等分点,得到BE=BG,根据正方形的性质得到AG=EC,根据全等三角形的性质即可得到结论.【详解】证明:取AB的三等分点,连接GE,∵点E是边BC的三等分点,∴BE=BG,∵四边形ABCD是正方形,∴AG=EC,∵△EBG为等腰直角三角形,可知∠AGE=135°,∵∠AEF=90°,∠BEA+∠FEC=90°,∠BEA+∠BAE=90°,∴∠BAE=∠FEC.∴△AGE≌△ECF(ASA),∴AE=EF.【点睛】此题考查正方形的性质,三角形全等的判定与性质,角平分线的性质等知识点,注意结合图形,灵活作出辅助线解决问题.20、(1)详见解析;(2)详见解析【解析】

(1)由四边形ABCD是平行四边形,得到AB=CD,AB∥CD,易得BE∥CD,由于BE=AB可得BE=CD,推出四边形BECD是平行四边形,再运用平行四边形的性质解答即可;(2)分别以C,E为圆心,以BE,BC的长为半径画弧,两弧交于一点F,则点F即为所求.【详解】(1)证明:∵中,∴,.又,,,四边形是平行四边形,.(2)如图:【点睛】本题考查了平行四边形的判定和性质,灵活运用平行四边形的判定和性质定理是解题的关键.21、(1)证明见解析;(2)t=1,(3)不存在某个时刻t,使四边形EHFG为矩形.【解析】

(1)根据菱形的性质得到∠B=∠D,AD=BC,AB∥DC,推出△ADF≌△CBE,根据全等三角形的性质得到∠DFA=∠BEC,根据平行线的判定定理即可得到结论;

(2)过D作DM⊥AB于M,连接GH,EF,推出四边形AECF是平行四边形,根据菱形的判定定理即可得到四边形EGFH是菱形,证得四边形DMEF是矩形,于是得到ME=DF=t列方程即可得到结论;

(3)不存在,假设存在某个时刻t,使四边形EHFG为矩形,根据矩形的性质列方程即可得到结果.【详解】(1)证明:∵动点E、F同时运动且速度相等,∴DF=BE,∵四边形ABCD是菱形,∴∠B=∠D,AD=BC,AB∥DC,在△ADF与△CBE中,∴△ADF≌△CBE,∴∠DFA=∠BEC,∵AB∥DC,∴∠DFA=∠FAB,∴∠FAB=∠BEC,∴AF∥CE;(2)过D作DM⊥AB于M,连接GH,EF,∴DF=BE=t,∵AF∥CE,AB∥CD,∴四边形AECF是平行四边形,∵G、H是AF、CE的中点,∴GH∥AB,∵四边形EGFH是菱形,∴GH⊥EF,∴EF⊥AB,∠FEM=90°,∵DM⊥AB,∴DM∥EF,∴四边形DMEF是矩形,∴ME=DF=t,∵AD=4,∠DAB=60°,DM⊥AB,∴∴BE=4﹣2﹣t=t,∴t=1,(3)不存在,假设存在某个时刻t,使四边形EHFG为矩形,∵四边形EHFG为矩形,∴EF=GH,∴EF2=GH2,即解得t=0,0<t<4,∴与原题设矛盾,∴不存在某个时刻t,使四边形EHFG为矩形.【点睛】属于四边形的综合题,考查全等三角形的判定与性质,菱形的性质,矩形的判定等,掌握菱形的性质,矩形的判定是解题的关键.22、(1)BD∥AC;(2);(3)【解析】

(1)由A与B的坐标求出OA与OB的长,进而得到B为OA的中点,而D为OC的中点,利用中位线定理即可得证;(2)如图1,作BF⊥AC于点F,取AB的中点G,确定出G坐标,由平行线间的距离相等求出BF的长,在直角三角形ABF中,利用斜边上的中线等于斜边的一半求出FG的长,进而确定出三角形BFG为等边三角形,即∠BAC=30°,设OC=x,则有AC=2x,利用勾股定理表示出OA,根据OA的长求出x的值,即可确定出C坐标;(3)如图2,当四边形ABDE为平行四边形时,AB∥DE,进而得到DE垂直于OC,再由D为OC中点,得到OE=CE,再由OE垂直于AC,得到三角形AOC为等腰直角三角形,求出OC的长,确定出C坐标,设直线AC解析式为y=kx+b,将A与C坐标代入求出k与b的值,即可确定出AC解析式.【详解】(1),,,,点B为线段OA的中点,点D为OC的中点,即BD为的中位线,;(2)如图1,作于点F,取AB的中点G,则,,BD与AC的距离等于2,,在中,,,点G为AB的中点,,是等边三角形,.,设,则,根据勾股定理得:,,,点C在x轴的正半轴上,点C的坐标为;(3)如图2,当四边形ABDE为平行四边形时,,,点D为OC的中点,,,,,点C在x轴的正半轴上,点C的坐标为,设直线AC的解析式为.将,得,解得:.直线AC的解析式为.【点睛】此题属于一次函数综合题,涉及的知识有:三角形中位线定理,坐标与图形性质,待定系数法求一次函数解析式,平行四边形的性质,等边三角形的性质,勾股定理,含30度直角三角形的性质,熟练掌握定理及性质是解本题的关键.23、10,4900【解析】

设每件工艺品降价x元出售,每天获得的利润为y元,根据题意列出方程,再根据二次函数最值的性质求解即可.【详解】设每件工艺品降价x元出售,每天获得的利润为y元,由题意得∴当时,y有最大值,最大值为4900故每件工艺品降价10元出售,每天获得的利润最大

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论