山东省临沂费县联考2024年八年级数学第二学期期末综合测试试题含解析_第1页
山东省临沂费县联考2024年八年级数学第二学期期末综合测试试题含解析_第2页
山东省临沂费县联考2024年八年级数学第二学期期末综合测试试题含解析_第3页
山东省临沂费县联考2024年八年级数学第二学期期末综合测试试题含解析_第4页
山东省临沂费县联考2024年八年级数学第二学期期末综合测试试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省临沂费县联考2024年八年级数学第二学期期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E,标记好脚掌中心位置为B,测得脚掌中心位置B到镜面中心C的距离是50cm,镜面中心C距离旗杆底部D的距离为4m,如图所示.已知小丽同学的身高是1.54m,眼睛位置A距离小丽头顶的距离是4cm,则旗杆DE的高度等于()A.10mB.12mC.12.4mD.12.32m2.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A. B. C. D.3.一组数据2,3,5,5,4的众数、中位数分别是()A.5,4 B.5,5 C.5,4.5 D.5,3.84.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形5.已知关于x的方程的解是正数,那么m的取值范围为()A.m>-6且m≠2 B.m<6 C.m>-6且m≠-4 D.m<6且m≠-26.下列二次根式中最简二次根式的个数有()①;②(a>0);③;④.A.1个 B.2个 C.3个 D.4个7.下列四个图形中,既是轴对称又是中心对称的图形是A.1个 B.2个 C.3个 D.4个8.如图,在R△ABC中,∠C=90°,∠A=30°,BC=4cm,则AB等于()A.9cm B.8cm C.7cm D.6cm9.直角三角形的边长分别为a,b,c,若a2=9,b2=16,那么c2的值是()A.5 B.7 C.25 D.25或710.一次函数的图象与轴的交点坐标是()A. B. C. D.11.三角形在正方形网格纸中的位置如图所示,则的值是()A. B. C. D.12.甲、乙两台机床同时生产一种零件,在5天中,两台机床每天出次品的数量如下表:甲01202乙21011关于以上数据的平均数、中位数、众数和方差,说法不正确的是()A.甲、乙的平均数相等 B.甲、乙的众数相等C.甲、乙的中位数相等 D.甲的方差大于乙的方差二、填空题(每题4分,共24分)13.如图,在中,点是边上的动点,已知,,,现将沿折叠,点是点的对应点,设长为.(1)如图1,当点恰好落在边上时,______;(2)如图2,若点落在内(包括边界),则的取值范围是______.14.有一道题“先化简,再求值:,其中”.小玲做题时把“”错抄成“”,她的计算结果正确吗?______.(填正确或错误)15.当x=______时,分式的值为0.16.一次函数图象经过一、三、四象限,则反比例函数的函数值随的增大而__________.(填增大或减小)17.已知点和都在第三象限的角平分线上,则_______.18.如图,在平面直角坐标系中,已知,,是轴上的一条动线段,且,当取最小值时,点坐标为______.三、解答题(共78分)19.(8分)已知一次函数的图象经过点,且与正比例函数的图象相交于点(1)求a的值;(2)求出一次函数的解析式;(3)求的面积.20.(8分)如图,一个正比例函数与一个一次函数的图象交于点A(3,4),其中一次函数与y轴交于B点,且OA=OB.(1)求这两个函数的表达式;(2)求△AOB的面积S.21.(8分)如图,已知点A(0,8)、B(8,0)、E(-2,0),动点C从原点O出发沿OA方向以每秒1个单位长度向点A运动,动点D从点B出发沿BO方向以每秒2个单位长度向点O运动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动,设运动时间为t秒。(1)填空:直线AB的解析式是_____________________;(2)求t的值,使得直线CD∥AB;(3)是否存在时刻t,使得△ECD是等腰三角形?若存在,请求出一个这样的t值;若不存在,请说明理由。22.(10分)若变量z是变量y的函数,同时变量y是变量x的函数,那么我们把变量z叫做变量x的“迭代函数”.例如:z2y3,yx1,则z2x132x1,那么z2x1就是z与x之间的“迭代函数”解析式.(1)当2006x2020时,zy2,,请求出z与x之间的“迭代函数”的解析式及z的最小值;(2)若z2ya,yax24axba0,当1x3时,“迭代函数”z的取值范围为1z17,求a和b的值;(3)已知一次函数yax1经过点1,2,zay2b2ycb4(其中a、b、c均为常数),聪明的你们一定知道“迭代函数”z是x的二次函数,若x1、x2(x1x2)是“迭代函数”z3的两个根,点x3,2是“迭代函数”z的顶点,而且x1、x2、x3还是一个直角三角形的三条边长,请破解“迭代函数”z关于x的函数解析式.23.(10分)四川苍溪小王家今年红心猕猴桃喜获丰收,采摘上市20天全部销售完,小王对销售情况进行跟踪记录,并将记录情况绘制成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图(1)所示,红星猕猴桃的价格z(单位:元/千克)与上市时间x(天)的函数关系式如图(2)所示.(1)观察图象,直接写出日销售量的最大值;(2)求小王家红心猕猴桃的日销量y与上市时间x的函数解析式;并写出自变量的取值范围.(3)试比较第6天和第13天的销售金额哪天多?24.(10分)如图,已知点A.B在双曲线y=

(x>0)上,AC⊥x轴于C,BD⊥y轴于点D,AC与BD交于点P,P是AC的中点.(1)设A的横坐标为m,试用m、k表示B的坐标.(2)试判断四边形ABCD的形状,并说明理由.(3)若△ABP的面积为3,求该双曲线的解析式.25.(12分)如图,已知BE∥DF,∠ADF=∠CBE,AF=CE,求证:四边形DEBF是平行四边形.26.在菱形ABCD中,∠ABC=60°,P是射线BD上一动点,以AP为边向右侧作等边△APE,连接CE.(1)如图1,当点P在菱形ABCD内部时,则BP与CE的数量关系是,CE与AD的位置关系是.(2)如图2,当点P在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;(3)如图2,连接BE,若AB=2,BE=2,求AP的长.

参考答案一、选择题(每题4分,共48分)1、B【解析】试题分析:由题意可得:AB=1.5m,BC=0.4m,DC=4m,△ABC∽△EDC,则,即,解得:DE=12,故选B.考点:相似三角形的应用.2、B【解析】

观察所给程序的运算过程,根据前两次运算结果小于或等于95、第三次运算结果大于95,列出关于x的不等式组;先求出不等式组中三个不等式的解集,再取三个不等式的解集的公共部分,即为不等式组的解集.【详解】由题意可得,解不等式①得,x≤47,解不等式②得,x≤1,解不等式③得,x>11,故不等式组的解集为11<x≤1.故选B.【点睛】此题考查一元一次不等式的应用,关键是根据“操作进行了三次才停止”列出满足题意的不等式组;3、A【解析】

根据众数的定义即众数是一组数据中出现次数最多的数和中位数的定义即中位数是将一组数据从小到大重新排列后,最中间的那个数即可求出答案.【详解】数据2,3,5,5,4中,5出现了2次,出现的次数最多,则众数是5;按大小顺序排列为5,5,4,3,2,最中间的数是4,则中位数是4;故选A.【点睛】此题考查了众数和中位数,掌握众数和中位数的定义是解题的关键,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).4、C【解析】试题分析:A.四个角相等的四边形是矩形,为真命题,故A选项不符合题意;B.对角线相等的平行四边形是矩形,为真命题,故B选项不符合题意;C.对角线垂直的平行四边形是菱形,为假命题,故C选项符合题意;D.对角线垂直的平行四边形是菱形,为真命题,故D选项不符合题意.故选C.考点:命题与定理.5、C【解析】

先求得分式方程的解(含m的式子),然后根据解是正数可知m+2>0,从而可求得m>-2,然后根据分式的分母不为0,可知x≠1,即m+2≠1.【详解】将分式方程转化为整式方程得:1x+m=3x-2解得:x=m+2.∵方程得解为正数,所以m+2>0,解得:m>-2.∵分式的分母不能为0,∴x-1≠0,∴x≠1,即m+2≠1.∴m≠-3.故m>-2且m≠-3.故选:C.【点睛】本题主要考查的是解分式方程和一元一次不等式的应用,求得方程的解,从而得到关于m的不等式是解题的关键.6、B【解析】

判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:①,不是最简二次根式;②,是最简二次根式;③,是最简二次根式;④,不是最简二次根式;故选:B.【点睛】本题考查的是最简二次根式,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.7、B【解析】

根据轴对称图形与中心对称图形的概念进行判断即可.【详解】既是轴对称又是中心对称的图形是第一个和第三个;是轴对称不是中心对称的图形是第二个和第四个;故选.【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8、B【解析】

根据含30度角的直角三角形的性质即可求出答案.【详解】直角三角形中,30°所对的边的长度是斜边的一半,所以AB=2BC=8cm.故选B.【点睛】本题考查含30度角的直角三角形,解题的关键是熟练运用30度角的直角三角形的性质,本题属于基础题型.9、D【解析】

此题有两种情况:①当a,b为直角边,c为斜边,由勾股定理求出c2即可;②当a,c为直角边,b为斜边,利用勾股定理即可求解;即可得出结论.【详解】解:当b为直角边时,c2=a2+b2=25,当b为斜边时,c2=b2﹣a2=7,故选:D.【点睛】此题主要考查学生对勾股定理的理解和掌握;解答此题要用分类讨论的思想,学生容易忽略a,c为直角边,b为斜边时这种情况,很容易选A,因此此题是一道易错题.10、A【解析】因为一次函数y=-2x+4的图像与x轴交点坐标是(2,0)与y轴交点坐标是(0,4),故选A.11、A【解析】

根据图形找到对边和斜边即可解题.【详解】解:由网格纸可知,故选A.【点睛】本题考查了三角函数的实际应用,属于简单题,熟悉三角函数的概念是解题关键.12、B【解析】

根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;对于n个数x1,x2,…,xn,则(x1+x2+…+xn)就叫做这n个数的算术平均数;s2=进行计算即可.【详解】解:A、甲的平均数为1,乙的平均数为1,故原题说法正确;B、甲的众数为0和2,乙的众数为1,故原题说法不正确;

C、甲的中位数为1,乙的中位数为1,故原题说法正确;

D、甲的方差为,乙的方差为,甲的方差大于乙的方差,故原题说法正确;

故选B.【点睛】本题考查众数、中位数、方差和平均数,关键是掌握三种数的概念和方差公式.二、填空题(每题4分,共24分)13、2;【解析】

(1)根据折叠的性质可得,由此即可解决问题;(2)作AH⊥DE于H.解直角三角形求出AH、HB′、DH,再证明,求出EB′即可解决问题;【详解】解:(1)∵折叠,∴.∵,∴,∴,∴,∴.(2)当落在上时,过点作于点.∵,,∴,∴.在中,,∴.∵,∴,∴.∴,∴,∴.【点睛】本题考查翻折变换、平行四边形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.14、正确【解析】

先去括号,再把除法变为乘法化简,化简后代入数值判断即可.【详解】解:,因为x=或x=时,x2的值均为3,所以原式的计算结果都为7,所以把“”错抄成“”,计算结果也是正确的,故答案为:正确.【点睛】本题考查分式的化简求值,应将除法转化为乘法来做,并分解因式、约分,得到化简的目的.同时也考查了学生的计算能力.15、1.【解析】

直接利用分式的值为零则分子为零,分母不为零进而得出答案.【详解】解:∵分式的值为0,

∴1x-4=0且x-1≠0,

解得:x=1.

故答案为:1.【点睛】本题考查分式的值为零的条件,正确把握分式的定义是解题关键.16、增大【解析】

根据一次函数图象经过一、三、四象限,可以得出>0,b<0,则反比例函数的系数,结合x>0即可得到结论.【详解】∵一次函数图象经过一、三、四象限,∴>0,b<0,∴,∴又x>0,∴反比例函数图象在第四象限,且y随着x的增大而增大,故答案为:增大.【点睛】本题考查了一次函数的图象和性质,反比例函数的图象和性质,掌握一次函数,反比例函数的图象和性质是解题的关键.17、-6【解析】

本题应先根据题意得出第三象限的角平分线的函数表达式,在根据、的坐标得出、的值,代入原式即可.【详解】解:点A(-2,x)和都在第三象限的角平分线上,,,.故答案为:.【点睛】本题考查了第三象限的角平分线上的点的坐标特点及代数式求值,注意第三象限的角平分线上的点的横纵坐标相等.18、【解析】

如图把点A向右平移1个单位得到E(1,1),作点E关于x轴的对称点F(1,-1),连接BF,BF与x轴的交点即为点Q,此时AP+PQ+QB的值最小,求出直线BF的解析式,即可解决问题.【详解】解:如图把点4向右平移1个单位得到E(1,1),作点E关于x轴的对称点F(1,-1),连接BF,BF与x轴的交点即为点Q,此时4P+PQ+QB的值最小.设最小BF的解析式为y=kx+b,则有解得∴直线BF的解析式为y=x-2,令y=0,得到x=2.∴Q(2.0)故答案为(2,0).【点睛】本题考查轴对称最短问题、坐标与图形的性质、一次函数的应用等知识,解题的关键是学会利用对称解决最短问题,学会构建一次函数解决交点问题,属于中考常考题型三、解答题(共78分)19、(1)1(2)(3)【解析】

(1)将点B代入正比例函数即可求出a的值;(2)将点A、B代入一次函数,用待定系数法确定k,b的值即可;(3)可将分割成两个三角形求其面积和即可.【详解】(1)依题意,点在正比例函数的图象上,所以,(2)依题意,点A、B在一次函数图象上,所以,,解得:,.一次函数的解析式为:,(3)直线AB与y轴交点为,的面积为:【点睛】本题考查了一次函数与反比例函数的综合,待定系数法求一次函数解析式是解题的关键,对于一般的三角形不易直接求面积时,可将其分割成多个易求面积的三角形.20、(1)OA:,AB:;(2)【解析】

(1)把A点坐标代入可先求得直线OA的解析式,可求得OA的长,则可求得B点坐标,可求得直线AB的解析式;(2)由A点坐标可求得A到y轴的距离,根据三角形面积公式可求得S.【详解】(1)设直线OA的解析式为y=kx,把A(3,4)代入得4=3k,解得k=,所以直线OA的解析式为y=x;∵A点坐标为(3,4),∴OA==5,∴OB=OA=5,∴B点坐标为(0,-5),设直线AB的解析式为y=ax+b,把A(3,4)、B(0,-5)代入得,解得,∴直线AB的解析式为y=3x-5;(2)∵A(3,4),∴A点到y轴的距离为3,且OB=5,∴S=×5×3=.【点睛】本题主要考查一次函数的交点问题,掌握两函数图象的交点坐标满足两函数解析式是解题的关键.21、【解析】分析:(1)由点A、B的坐标,利用待定系数法求出直线解析式即可;(2)当CD∥AB时,∠CDO=∠ABO,根据tan∠CDO=tan∠ABO列方程求解即可;(3)当EO=DO时,△ECD是等腰三角形,从而可求出t的值.详解:(1)将点A(0,1)、B(1,0)代入y=kx+b中,得:,解得:,∴该直线的解析式为y=-x+1.故答案为:y=-x+1.(2)当直线AB∥CD时,∠CDO=∠ABO,∴tan∠CDO=tan∠ABO∴,解得,.故当时,AB∥CD.(3)存在.事实上,当EO=OD时,△ECD就是等腰三角形,此时,EO=2,OD=1-2t,由,解得,.∴存在时刻T,当时,△ECD是等腰三角形点睛:本题考查了待定系数法求函数解析式、平行线的判定与性质,等腰三角形的判定以及解一元一次方程,解题的关键是:(1)利用待定系数法求出函数解析式;(2)①得出关于t的一元一次方程;②得出关于t的一元一次方程.22、(1)z=-x+6;-1004;(2)或;(3)【解析】

(1)把代入zy2中化简即可得出答案;(2)把yax24axba0代入z2ya整理得z=2a(x-2)2-7a+2b,再分两种情况讨论,分别得方程组和,求解即可得;(3)把(1,2)代入y=ax+1解得a=1,得出y=x+1,再将y=x+1代入z=ay2+(b-2)y+c-b+4得,根据点x3,2是“迭代函数”z的顶点得出,再根据当z=3时,解得,又x1、x2、x3是一个直角三角形的三条边长得,代入解得b=-8,c=15,从而得解。【详解】解:(1)把代入zy2中得:z()2=-x+6∵-<0,∴z随着x的增大而减小,∵2006x2020,∴当x=2020时,z有最小值,最小值为z=-×2020+6=-1004故答案为:z=-x+6;-1004(2)把yax24axba0代入z2ya,得z2(ax24axb)a=2ax28axba,=2a(x-2)2-7a+2b这是一个二次函数,图象的对称轴是直线x=2,当a>0时,由函数图象的性质可得x=-1时,z=17;x=3时,z=-1;∴解得当a<0时,由函数图象的性质可得x=-1时,z=-1;x=3时,z=17;∴解得综上,或(3)把(1,2)代入y=ax+1得a+1=2解得a=1∴y=x+1把y=x+1代入z=ay2+(b-2)y+c-b+4并整理得∵点x3,2是“迭代函数”z的顶点,整理得当z=3时,解得又∵x1x2∴x1x3x2又∵x1、x2、x3还是一个直角三角形的三条边长∴即解得∴把代入解得c=15∴故答案为:【点睛】本题考查了二次函数和“迭代函数”,理解“迭代函数”的概念和函数的性质是解题的关键。23、(1)日销售量最大为120千克;(2);(3)第6天比第13天销售金额大.【解析】

(1)观察图(1),可直接得出第12天时,日销售量最大120千克;(2)观察图(1)可得,日销售量y与上市时间x的函数关系式存在两种形式,根据直线所经过点的坐标,利用待定系数法直接求得函数解析式;(3)观察图(1),根据(2)求出的函数解析式,分别求出第6天和第13天的日销售量,再根据图(2),求出第6天和第13天的销售单价,求出第6天和第13天的销售金额,最后比较即可.【详解】(1)由图(1)可知,x=12时,日销售量最大,为120千克;(2)0≤x<12时,设y=k1x,∵函数图象经过点(12,120),∴12k1=120,解得k1=10,∴y=10x,12≤x≤20时,设y=k2x+b1,∵函数图象经过点(12,120),(20,0),∴,解得,∴y=﹣15x+300,综上所述,y与x的函数关系式为;(3)5≤x≤15时,设z=k3x+b2,∵函数图象经过点(5,32),(15,12),∴,解得,∴z=﹣2x+42,x=6时,y=60,z=﹣2×6+42=30,∴销售金额=60×30=1800元,x=13时,y=﹣15×13+300=105,z=﹣2×13+42=16,∴销售金额=105×16=1680元,∵1800>1680,∴第6天比第13天销售金额大.【点睛】本题考查了一次函数的应用,涉及了待定系数法,二元一次方程组的解法,弄清题意,准确识图是解题的关键.应注意自变量的取值范围.24、(1)B(2m,);(2)四边形ABCD是菱形,理由见解析;(3)y=.【解析】

(1)根据点P是AC的中点得到点A的横坐标是m,结合反比例函数图象上点的坐标特征来求点B的坐标;(2)根据点P的坐标得到点P是BD的中点,所以由“对角线互相垂直平分的四边形是菱形”得到四边形ABCD是菱形;(3)由△ABP的面积为3,知BP•AP=1.根据反比例函数y=中k的几何意义,知本题k=OC•AC,由反比例函数的性质,结合已知条件P是AC的中点,得出OC=BP,AC=2AP,进而求出k的值.【详解】(1)∵A的横坐标为m,AC⊥x轴于C,P是AC的中点,∴点B的横坐标是2m.又∵点B在双曲线y=

(x>0)上,∴B(2m,).(2)连接AD、CD、BC;∵AC⊥x轴于C,BD⊥y轴于点D,∴AC⊥BD;∵A(m,),B(2m,),∴P(m,),∴PD=PB,又AP=PC,∴四边形ABCD是菱形;(3)∵△ABP的面积为⋅BP⋅AP=3,∴BP⋅AP=1,∵P是AC的中点,∴A点的纵坐标是B点纵坐标的2倍,又∵点A.B都在双曲线y=(x>0)上,∴B点的横坐标是A点横坐标的2倍,∴OC=DP=BP,∴k=OC⋅AC=BP⋅2AP=12.∴该双曲线的解析式是:y=.【点睛】此题考查反比例函数综合题,解题关键在于作辅助线.25、证明见解析【解析】

首先根据平行线的性质可得∠BEC=∠DFA,再加上条件∠ADF=∠CBE,AF=CE,可证明△ADF≌△CBE,再根据全等三角形的性质可得BE=DF,根据一组对边平行且相等的四边形是平行四边形进行判定即可.【详解】证明:∵BE∥DF,∴∠BEC=∠DFA∵在△ADF和△CBE中,,∴△ADF≌△CBE(AAS)∴BE=DF,又∵B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论