湖南省长沙市望城县2024届八年级下册数学期末复习检测试题含解析_第1页
湖南省长沙市望城县2024届八年级下册数学期末复习检测试题含解析_第2页
湖南省长沙市望城县2024届八年级下册数学期末复习检测试题含解析_第3页
湖南省长沙市望城县2024届八年级下册数学期末复习检测试题含解析_第4页
湖南省长沙市望城县2024届八年级下册数学期末复习检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省长沙市望城县2024届八年级下册数学期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.在▱ABCD中,∠A:∠B:∠C=1:2:1,则∠D等于()A.0° B.60° C.120° D.150°2.坐标平面上有一点A,且A点到x轴的距离为3,A点到y轴的距离恰为到x轴距离的3倍,若A点在第二象限,则A点坐标为()A.(﹣3,9) B.(﹣3,1) C.(﹣9,3) D.(﹣1,3)3.如图,先将矩形ABCD沿三等分线折叠后得到折痕PQ,再将纸片折叠,使得点A落在折痕PQ上E点处,此时折痕为BF,且AB=1.则AF的长为()A.4 B. C. D.4.用反证法证明“在一个三角形中,至少有一个内角小于或等于60°”时应假设()A.三角形中有一个内角小于或等于60°B.三角形中有两个内角小于或等于60°C.三角形中有三个内角小于或等于60°D.三角形中没有一个内角小于或等于60°5.如图,四边形ABCD中,AB=AD,AD∥BC,∠ABC=60°,∠BCD=30°,BC=6,那么△ACD的面积是()A. B. C.2 D.6.下列分式中,无论取何值,分式总有意义的是()A. B. C. D.7.如图,矩形ABCD,对角线AC、BD交于点O,AE⊥BD于点E,∠AOB=45°,则∠BAE的大小为()

A.15° B.22.5° C.30° D.45°8.一次函数y=k-2x+3的图像如图所示,则k的取值范围是(A.k>3 B.k<3 C.k>2 D.k<29.下列语句:①每一个外角都等于60∘A.1 B.2 C.3 D.410.下列根式中,不是最简二次根式的是()A.105 B.2 C.8 D.二、填空题(每小题3分,共24分)11.如图,四边形ABCD的对角线AC、BD相交于点O,且OA=OC,OB=OD.请你添加一个适当的条件:______________,使四边形ABCD成为菱形.12.在四边形ABCD中,AB=CD,请添加一个条件_____,使得四边形ABCD是平行四边形.13.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为.14.若个数,,,的中位数为,则_______.15.如图,以Rt△ABC的斜边AB为一边在△ABC同侧作正方形ABEF.点O为AE与BF的交点,连接CO.若CA=2,CO=,那么CB的长为________.16.如图为某班35名学生投篮成绩的条形图,其中上面部分数据破损导致数据不完全,已知此班学生投篮成绩的中位数是5,下列选项正确的是_______.①3球以下(含3球)的人数;②4球以下(含4球)的人数;③5球以下(含5球)的人数;④6球以下(含6球)的人数.17.已知在△ABC中,∠ABC和∠ACB的角平分线交于O,且∠ABC的角平分线与∠ACB的外角平分线交于P,∠OPC和∠OCP角平分线交于H,∠H=117.5°,则∠A=________18.如图,在矩形ABCD中,对角线AC与BD相交于点O,∠AOB=60°,AE平分∠BAD,AE交BC于E,则∠BOE的大小为______.三、解答题(共66分)19.(10分)一家公司名员工的月薪(单位:元)是(1)计算这组数据的平均数、中位数和众数;(2)解释本题中平均数、中位数和众数的意义。20.(6分)已知:点A-1,0,B(1)求:直线AB的表达式;(2)直接写出直线AB向下平移2个单位后得到的直线表达式;(3)求:在(2)的平移中直线AB在第三象限内扫过的图形面积.21.(6分)如图①,中,,点为边上一点,于点,点为中点,点为中点,的延长线交于点,≌.(1)求证:;(2)求的大小;(3)如图②,过点作交的延长线于点,求证:四边形为矩形.22.(8分)数学活动课上,老师提出了一个问题:如图1,A、B两点被池塘隔开,在AB外选一点,连接AC和BC,怎样测出A、B两点的距离?(活动探究)学生以小组展开讨论,总结出以下方法:⑴如图2,选取点C,使AC=BC=a,∠C=60°;⑵如图3,选取点C,使AC=BC=b,∠C=90°;⑶如图4,选取点C,连接AC,BC,然后取AC、BC的中点D、E,量得DE=c…(活动总结)(1)请根据上述三种方法,依次写出A、B两点的距离.(用含字母的代数式表示)并写出方法⑶所根据的定理.AB=________,AB=________,AB=________.定理:________.(2)请你再设计一种测量方法,(图5)画出图形,简要说明过程及结果即可.23.(8分)学校准备五一组织老师去隆中参加诸葛亮文化节,现有甲、乙两家旅行社表示对老师优惠,设参加文化节的老师有x人,甲、乙两家旅行社实际收费为y1、y2,且它们的函数图象如图所示,根据图象信息,请你回答下列问题:(1)当参加老师的人数为多少时,两家旅行社收费相同?(2)求出y1、y2关于x的函数关系式?(3)如果共有50人参加时,选择哪家旅行社合算?24.(8分)如图,正方形ABCD的边长为2,对角线AC、BD相交于点O,E是OC的中点,连接BE,过点A作AM⊥BE于点M,交BD于点F.(1)求证:AF=BE;(2)求点E到BC边的距离.25.(10分)如图,四边形ABCD是菱形,对角线AC、BD相交于点O.(1)尺规作图:以OA、OD为边,作矩形OAED(不要求写作法,但保留作图痕迹);(2)若在菱形ABCD中,∠BAD=120°,AD=2,求所作矩形OAED的周长.26.(10分)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:,善于思考的小明进行了以下探索:设(其中均为整数),则有.∴.这样小明就找到了一种把部分的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:当均为正整数时,若,用含m、n的式子分别表示,得=,=;(2)利用所探索的结论,找一组正整数,填空:+=(+)2;(3)若,且均为正整数,求的值.

参考答案一、选择题(每小题3分,共30分)1、C【解析】

在□ABCD中,,,而且四边形内角和是,由此得到,.【详解】解:在□ABCD中,,∴又∵,∴,.故选:C.【点睛】本题主要考查四边形的内角和定理及平行四边形的性质,利用平行四边形的性质寻找各角之间的关系是解题的关键.2、C【解析】

根据点到x轴的距离等于纵坐标的绝对值求出点A的纵坐标,再根据点到y轴的距离等于横坐标的绝对值求出横坐标,再根据A点在第二象限,即可得解.【详解】解:∵A点到x轴的距离为3,A点在第二象限,

∴点A的纵坐标为3,

∵A点到y轴的距离恰为到x轴距离的3倍,A点在第二象限,

∴点A的横坐标为-9,

∴点A的坐标为(-9,3).

故选:C.【点睛】本题考查了点的坐标,主要利用了点到x轴的距离等于纵坐标的长度,点到y轴的距离等于横坐标的长度,需熟练掌握并灵活运用.3、C【解析】

作EM⊥AD于M,交BC于N.只要证明△EMB∽△BNE,可得BE:EF=BN:EM,由此即可解决问题.【详解】解:作EM⊥AD于M,交BC于N.在Rt△BEN中,BE=AB=1,EN=6,∴BN=,∵∠FEM+∠BEN=10°,∠BEN+∠EBN=10°,∴∠FEM=∠EBN,∵∠FME=∠ENB=10°,∴△EMB∽△BNE,∴BE:EF=BN:EM,∴1:EF=3:3,∴EF=,∴AF=EF=.故选C.【点睛】本题考查翻折变换、矩形的性质、相似三角形的判定和性质等知识,解题的关键是准确寻找相似三角形解决问题,属于中考常考题型.4、D【解析】

熟记反证法的步骤,直接选择即可.【详解】根据反证法的步骤,第一步应假设结论的反面成立,即假设三角形中没有一个内角小于或等于60°.故选:D.【点睛】此题主要考查了反证法的步骤,解此题关键要懂得反证法的意义及步骤.5、A【解析】试题分析:如图,过点A作AE⊥BC于E,过点D作DF⊥BC于F.设AB=AD=x.又∵AD∥BC,∴四边形AEFD是矩形形,∴AD=EF=x.在Rt△ABE中,∠ABC=60°,则∠BAE=30°,∴BE=AB=x,∴DF=AE==x,在Rt△CDF中,∠FCD=30°,则CF=DF•cot30°=x.又BC=6,∴BE+EF+CF=6,即x+x+x=6,解得x=2∴△ACD的面积是:AD•DF=x×x=×22=.故选A.考点:1.勾股定理2.含30度角的直角三角形.6、A【解析】

根据分式有意义的条件是分母不等于零判断.【详解】解:A、∵a2≥0,∴a2+1>0,∴总有意义;B、当a=−时,2a+1=0,无意义;C、当a=±1时,a2−1=0,无意义;D、当a=0时,无意义;无意义;故选:A.【点睛】本题考查的是分式有意义的条件,掌握分式有意义的条件是分母不等于零是解题的关键.7、B【解析】

根据同角的余角相等易证∠BAE=∠ADE,根据矩形对角线相等且互相平分的性质,可得∠OAB=∠OBA,在Rt△ABD中,已知∠OBA即可求得∠ADB的大小,从而得到结果.【详解】∵四边形ABCD是矩形,AE⊥BD,

∴∠BAE+∠ABD=90°,∠ADE+∠ABD=90°,

∴∠BAE=∠ADE

∵矩形对角线相等且互相平分,

∴∠OAB=∠OBA=,

∴∠BAE=∠ADE=90﹣67.5°=22.5°,

故选B.【点睛】本题考查了矩形的性质,解题的关键是熟练掌握矩形的对角线相等且互相平分.8、D【解析】

根据一次函数的图象得到关于k的不等式,求出k的取值范围即可.【详解】∵一次函数的图象过二、四象限,∴k−2<0,解得k<2.故选:D.【点睛】此题考查一次函数图象与系数的关系,解题关键在于判定k的大小.9、C【解析】

根据多边形的外角,反证法的定义,等腰三角形的性质与判定,分式有意义的条件,进行逐一判定分析,即可解答.【详解】①每一个外角都等于60°的多边形是六边形,正确;②“反证法”就是从反面的角度思考问题的证明方法,故错误;③“等腰三角形两底角相等”的逆命题是有两个角相等的三角形为等腰三角形,是真命题,正确;④分式值为零的条件是分子为零且分母不为零,故正确;正确的有3个.故选C.【点睛】此题考查命题与定理,解题关键在于掌握各性质定理.10、C【解析】

根据最简二次根式的概念即可求出答案.【详解】C.原式=22,故C不是最简二次根式,故选:C.【点睛】此题考查最简二次根式,解题关键在于掌握其概念.二、填空题(每小题3分,共24分)11、AB=AD.【解析】

由条件OA=OC,AB=CD根据对角线互相平分的四边形是平行四边形可得四边形ABCD为平行四边形,再加上条件AB=AD可根据一组邻边相等的平行四边形是菱形进行判定.【详解】添加AB=AD,∵OA=OC,OB=OD,∴四边形ABCD为平行四边形,∵AB=AD,∴四边形ABCD是菱形,故答案为:AB=AD.【点睛】此题主要考查了平行四边形的判定,关键是掌握一组对边平行且相等的四边形是平行四边形.12、AB//CD等【解析】

根据平行四边形的判定方法,结合已知条件即可解答.【详解】∵AB=CD,∴当AD=BC,(两组对边分别相等的四边形是平行四边形.)或AB∥CD(一组对边平行且相等的四边形是平行四边形.)时,四边形ABCD是平行四边形.故答案为AD=BC或者AB∥CD.【点睛】本题考查了平行四边形的判定,平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.13、1.【解析】

∵AB=5,AD=12,∴根据矩形的性质和勾股定理,得AC=13.∵BO为Rt△ABC斜边上的中线∴BO=6.5∵O是AC的中点,M是AD的中点,∴OM是△ACD的中位线∴OM=2.5∴四边形ABOM的周长为:6.5+2.5+6+5=1故答案为114、【解析】

根据中位数的概念求解.【详解】解:∵5,x,8,10的中位数为7,∴,解得:x=1.故答案为:1.【点睛】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.15、+2【解析】如图,在BC上截取BD=AC=2,连接OD,∵四边形AFEB是正方形,∴AO=BO,∠AOB=∠ACB=90°,∴∠CAO=90°-∠ACH,∠DBO=90°-∠BHO,∵∠ACH=∠BHO,∴∠CAO=∠DBO,∴△ACO≌△BDO,∴DO=CO=,∠AOC=∠BOD,∵∠BOD+∠AOD=90°,∴∠AOD+∠AOC=90°,即∠COD=90°,∴CD=,∴BC=BD+CD=.故答案为:.点睛:本题的解题要点是,通过在BC上截取BD=AC,并结合已知条件证△ACO≌△BDO来证得△COD是等腰直角三角形,这样即可求得CD的长,从而使问题得到解决.16、①②④【解析】

根据题意和条形统计图中的数据可以求得各个选项中对应的人数,从而可以解答本题.【详解】因为共有35人,而中位数应该是第18个数,所以第18个数是5,从图中看出第四个柱状图的范围在6以上,所以投4个球的有7人.可得:3球以下(含3球)的人数为10人,4球以下(含4球)的人数10+7=17人,6球以下(含6球)的人数35-1=1.故只有5球以下(含5球)的人数无法确定.故答案为①②④【点睛】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.同时理解中位数的概念.17、70°【解析】

根据三角形内角和定理,可得∠HCP+∠HPC=62.5°,由角平分线的性质,得∠OCP+∠OPC=125°,由三角形外角性质,得到∠BOC的度数,然后∠OBC+OCB=55°,然后可以计算得到∠A的度数.【详解】解:∵∠H=117.5°,∴∠HCP+∠HPC=180°-117.5°=62.5°,∵CH平分∠OCP,PH平分∠OPC,∴∠OCP+∠OPC=2(∠HCP+∠HPC)=125°,∴∠BOC=125°,∴∠OBC+∠OCB=180°-125°=55°,∵BO平分∠ABC,CO平分∠ACB,∴∠ABC+∠ACB=2(∠OBC+OCB)=110°,∴∠A=180°-110°=70°;故答案为:70°.【点睛】本题考查了角平分线的性质,三角形的内角和定理,三角形的外角性质,解题的关键是灵活运用性质求出有关的角度.18、【解析】

由矩形的性质得出∠BAD=∠ABC=90°,OA=OB,证明△AOB是等边三角形,得出AB=OB,∠ABO=60°,证出△ABE是等腰直角三角形,得出AB=BE,因此BE=OB,由等腰三角形的性质即可得出∠BOE的大小.【详解】解:∵四边形ABCD是矩形,∴∠BAD=∠ABC=90°,OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠ABO=60°,∴△AOB是等边三角形,∴AB=OB,∠ABO=60°,∴∠OBE=30°,∵AE平分∠BAD,∴∠BAE=45°,∴△ABE是等腰直角三角形,∴AB=BE,∴BE=OB,∴∠BOE=(180°-∠OBE)=(180°-30°)=75°.故答案为75°.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,等腰直角三角形的判定与性质,等腰三角形的性质.熟练掌握矩形的性质,并能进行推理计算是解题的关键.三、解答题(共66分)19、(1)平均数,中位数,众数;(2)员工的月平均工资为,约有一半员工的工资在以下,月薪为元的员工最多【解析】

(1)根据平均数、中位数和众数的定义及计算公式分别进行解答,即可求出答案;(2)根据平均数、中位数和众数的意义分别进行解答即可.【详解】(1)这组数据的平均数是:(8000+6000+2550+1700+2550+4599+4200+2500+5100+2500+4400+25000+12400+2500)=6003.5(元);排序后,中位数是第7和8个数的平均数,即=4300(元);∵2550出现了3次,出现的次数最多,∴众数是2550;(2)员工的月平均工资为6003.5,约有一半的员工的工资在4300以下,月薪为2550元的员工最多.【点睛】此题考查了平均数、中位数和众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数;平均数是指在一组数据中所有数据之和再除以数据的个数.20、(1)y=-3x-3;(2)y=-3x-5;(3)83【解析】

(1)根据点A、B的坐标利用待定系数法即可求出直线AB的表达式;(2)根据平移的规律“上加下减,左加右减”即可得出平移后的直线表达式;(3)设直线y=-3x-5与x轴交点为点D,与y轴的交点为点C,根据一次函数图象上点的坐标特征可求出点C、D的坐标,再根据直线AB在第三象限内扫过的图形面积=S【详解】解:(1)设直线AB的表达式为y=kx+b,将A-1,0,B0,-3代入得-k+b=0b=-3,解得:k=-3∴直线AB的表达式为y=-3x-3.(2)根据平移的规律可知:直线AB:y=-3x-3向下平移2个单位后得到的直线表达式为:y=-3x-3-2=-3x-5.(3)设直线y=-3x-5与x轴交点为点D,与y轴的交点为点C,在y=-3x-5中,当x=0时,y=-5,∴点C的坐标为0,-5;当y=-3x-5=0时,∴点D的坐标为-5∴直线AB在第三象限内扫过的图形面积=S=1=8【点睛】本题考查了一次函数图象与几何变换、待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出函数表达式;(2)牢记平移的规律“上加下减,左加右减”;(3)结合图形找出直线AB在第三象限内扫过的图形面积=SΔDOC21、(1)证明见解析;(2)∠MEF=30°;(3)证明见解析.【解析】

(1)利用直角三角形斜边中线的性质定理可得CM=DB,EM=DB,问题得证;(2)利用全等三角形的性质,证明△DEM是等边三角形,即可解决问题;(3)设FM=a,则AE=CM=EM=a,EF=2a,推出,,得到AN∥PM,易证四边形ANMP是平行四边形,结合∠P=90°即可解决问题.【详解】解:(1)证明:如图①中,∵DE⊥AB,∴∠DEB=∠DCB=90°,∵DM=MB,∴CM=DB,EM=DB,∴CM=EM;(2)解:∵△DAE≌△CEM,CM=EM,∴AE=ED=EM=CM=DM,∠AED=∠CME=90°∴△ADE是等腰直角三角形,△DEM是等边三角形,∵∠AED=∠DEF=90°,∠DEM=60°,∴∠MEF=30°;(3)证明:如图②中,设FM=a.由(2)可知△ADE是等腰直角三角形,△DEM是等边三角形,∠MEF=30°,∴AE=CM=EM=a,EF=2a,∵CN=NM,∴MN=a,∴,,∴EM∥AN,∵AP⊥PM,MN⊥PM,∴AP∥MN,∴四边形ANMP是平行四边形,∵∠P=90°,∴四边形ANMP是矩形.【点睛】本题考查了全等三角形的性质、等腰直角三角形的判定和性质、等边三角形的判定和性质、直角三角形斜边中线定理、平行线分线段成比例定理以及矩形的判定等知识,解题的关键是灵活运用所学知识进行推理论证,学会利用参数解决问题,属于中考压轴题.22、见解析【解析】试题分析:(1)分别利用等边三角形的判定方法以及直角三角形的性质和三角形中位线定理得出答案;(2)直接利用利用勾股定理得出答案.解:(1)∵AC=BC=a,∠C=60°,∴△ABC是等边三角形,∴AB=a;∵AC=BC=b,∠C=90°,∴AB=b,∵取AC、BC的中点D、E,∴DE∥AB,DE=AB,量得DE=c,则AB=2c(三角形中位线定理);故答案为a,b,2c,三角形中位线定理;(2)方法不唯一,如:图5,选取点C,使∠CAB=90°,AC=b,BC=a,则AB=.【点评】此题主要考查了应用设计与作图,正确应用勾股定理是解题关键.23、(1)当参加老师的人数为30时,两家旅行社收费相同;(2)y2=40x+600;(3)如果共有50人参加时,选择乙家旅行社合算,理由见解析【解析】

(1)根据函数图象和图象中的数据可以得到当参加老师的人数为多少时,两家旅行社收费相同;(2)根据函数图象中的数据可以求得y1、y2关于x的函数关系式;(3)根据函数图象可以得到如果共有50人参加时,选择哪家旅行社合算.【详解】解:(1)由图象可得,当参加老师的人数为30时,两家旅行社收费相同;(2)设y1关于x的函数关系式是y1=ax,30a=1800,得a=60,即y1关于x的函数关系式是y1=60x;设y2关于x的函数关系式是y2=kx+b,,得,即y2关于x的函数关系式是y2=40x+600;(3)由图象可得,当x>50时,乙旅行社比较合算,∴如果共有50人参加时,选择乙家旅行社合算.【点睛】本题考查一次函数的应用、方案选择问题,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.24、(1)见解析;(2).【解析】

(1)利用ASA证明△AFO≌△BE,然后根据全等三角形的对应边相等即可得AF=BE;(2)如图,过点E作EN⊥BC,垂足为N,根据正方形的边长求得对角线的长,继而求得OC的长且∠ECN=45°,由E是OC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论