安阳市第九中学2024年八年级数学第二学期期末联考试题含解析_第1页
安阳市第九中学2024年八年级数学第二学期期末联考试题含解析_第2页
安阳市第九中学2024年八年级数学第二学期期末联考试题含解析_第3页
安阳市第九中学2024年八年级数学第二学期期末联考试题含解析_第4页
安阳市第九中学2024年八年级数学第二学期期末联考试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安阳市第九中学2024年八年级数学第二学期期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,数轴上点A,B表示的数分别是1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M表示的数是()A. B.C. D.2.如图,在平面直角坐标系中,点P坐标为(﹣2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.﹣4和﹣3之间 B.3和4之间 C.﹣5和﹣4之间 D.4和5之间3.如果不等式组有解,那么m的取值范围是A. B. C. D.4.如图,在平行四边形ABCD中,AC、BD相交于点O,点E是AB的中点.若OE=3cm,则AD的长是()A.3cm B.6cm C.9cm D.12cm5.计算的结果等于()A. B. C. D.6.如图,的一边在轴上,长为5,且,反比例函数和分别经过点,,则的周长为A.12 B.14 C. D.7.一组数据5,8,8,12,12,12,44的众数是()A.5 B.8 C.12 D.448.把方程化成(x+m)2=n的形式,则m、n的值是()A.4,13 B.4,19 C.-4,13 D.-4,199.到三角形三个顶点距离相等的点是()A.三角形三条边的垂直平分线的交点B.三角形三条角平分线的交点C.三角形三条高的交点D.三角形三条边的中线的交点10.在△ABC中,AB=,BC=,AC=,则()A.∠A=90° B.∠B=90° C.∠C=90° D.∠A=∠B11.用反证法证明命题:“四边形中至少有一个角是钝角或直角”时,首先应该假设这个四边形中()A.有一个角是钝角或直角 B.每一个角都是钝角C.每一个角都是直角 D.每一个角都是锐角12.如图,正方形的边长为4,点是对角线的中点,点、分别在、边上运动,且保持,连接,,.在此运动过程中,下列结论:①;②;③四边形的面积保持不变;④当时,,其中正确的结论是()A.①② B.②③ C.①②④ D.①②③④二、填空题(每题4分,共24分)13.一元二次方程化成一般式为________.14.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是_____.15.如图,点P是边长为5的正方形ABCD内一点,且PB=2,PB⊥BF,垂足为点B,请在射线BF上找一点M,使得以B,M,C为顶点的三角形与ABP相似,则BM=_____.16.若有意义,则x的取值范围是.17.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.18.某校要从甲、乙两名跳远运动员挑选一人参加校际比赛.在十次选拔比赛中,他们的方差分别为S甲2=1.32,S乙2=1.26,则应选________参加这项比赛(填“甲”或者“乙”)三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,函数的图象经过点和点.过点作轴,垂足为点,过点作轴,垂足为点,连结、、、.点的横坐标为.(1)求的值.(2)若的面积为.①求点的坐标.②在平面内存在点,使得以点、、、为顶点的四边形是平行四边形,直接写出符合条件的所有点的坐标.20.(8分)已知矩形ABCD的一条边AD=8,E是BC边上的一点,将矩形ABCD沿折痕AE折叠,使得顶点B落在CD边上的点P处,PC=4(如图1).(1)求AB的长;(2)擦去折痕AE,连结PB,设M是线段PA的一个动点(点M与点P、A不重合).N是AB沿长线上的一个动点,并且满足PM=BN.过点M作MH⊥PB,垂足为H,连结MN交PB于点F(如图2).①若M是PA的中点,求MH的长;②试问当点M、N在移动过程中,线段FH的长度是否发生变化?若变化,说明理由;若不变,求出线段FH的长度.21.(8分)先化简,然后从中选出一个合适的整数作为的值代入求值.22.(10分)阅读下列解题过程,并解答后面的问题:如图,在平面直角坐标系中,,,C为线段AB的中点,求C的坐标.解:分别过A,C作x轴的平行线,过B,C作y轴的平行线,两组平行线的交点如图1.设C的坐标为,则D、E、F的坐标为,,由图可知:,∴C的坐标为问题:(1)已知A(-1,4),B(3,-2),则线段AB的中点坐标为______(2)平行四边形ABCD中,点A、B、C的坐标分别为(1,-4),(0,2),(5,6),求D的坐标.(3)如图2,B(6,4)在函数的图象上,A的坐标为(5,2),C在x轴上,D在函数的图象上,以A、B、C、D四个点为顶点构成平行四边形,直接写出所有满足条件的D点的坐标.23.(10分)如图1,已知直线y=﹣2x+4与两坐标轴分别交于点A、B,点C为线段OA上一动点,连接BC,作BC的中垂线分别交OB、AB交于点D、E.(l)当点C与点O重合时,DE=;(2)当CE∥OB时,证明此时四边形BDCE为菱形;(3)在点C的运动过程中,直接写出OD的取值范围.24.(10分)如图,已知.利用直尺和圆规,根据下列要求作图(不写作法,保留作图痕迹),并回答问题:(1)作的平分线、交于点;(2)作线段的垂直平分线,交于点,交于点,连接;(3)写出你所作出的图形中的所有等腰三角形.25.(12分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)26.如图1,四边形ABCD中,AD//BC,∠ADC=90°,AD=8,BC=CD=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ,设运动时间为t秒.(1)连接AN、CP,当t为何值时,四边形ANCP为平行四边形;(2)求出点B到AC的距离;(3)如图2,将ΔAQM沿AD翻折,得ΔAKM,是否存在某时刻t,使四边形AQMK为菱形,若存在,求t的值;若不存在,请说明理由

参考答案一、选择题(每题4分,共48分)1、B【解析】

先依据勾股定理可求得OC的长,从而得到OM的长,于是可得到点M对应的数.【详解】解:由题意得可知:OB=2,BC=1,依据勾股定理可知:OC==.

∴OM=.

故选:B.【点睛】本题考查勾股定理、实数与数轴,熟练掌握相关知识是解题的关键.2、A【解析】

由P点坐标利用勾股定理求出OP的长,再根据已知判定A点的位置求解即可.【详解】因为点坐标为,所以,故.因为,,,即,点在x轴的负半轴,所以点的横坐标介于﹣4和﹣3之间.故选A.【点睛】本题主要考查平面直角坐标系的有关概念和圆的基本概念.3、C【解析】

在数轴上表示两个不等式的解集,若不等式组有解,则有公共部分,可求得m的取值范围.【详解】在数轴上分析可得,不等式组有解,则两个不等式有公共解,那么m的取值范围是.故选:C【点睛】本题考核知识点:不等式组的解.解题关键点:理解不等式组的解的意义.4、B【解析】

根据平行四边形的性质,可得出点O平分BD,则OE是三角形ABD的中位线,则AD=2OE,问题得解.【详解】解:∵四边形ABCD为平行四边形,

∴BO=DO,

∵点E是AB的中点,

∴OE为△ABD的中位线,

∴AD=2OE,

∵OE=3cm,

∴AD=6cm.

故选B.【点睛】本题考查了平行四边形的性质、三角形的中位线定理,是基础知识比较简单,熟记平行四边形的各种性质是解题关键.5、D【解析】

利用乘法法则计算即可求出值【详解】解:原式=-54,

故选D.【点睛】此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.6、B【解析】

设点,则点,,然后根据的长列出方程,求得的值,得到的坐标,解直角三角形求得,就可以求得的周长。【详解】解:设点,则点,,,四边形是平行四边形,,,解得,,作于,则,,,的周长,故选:.【点睛】本题考查了反比例函数图象上点的坐标特征,平行四边形的性质,用点,的横坐标之差表示出的长度是解题的关键.7、C【解析】

根据题目中的数据可以得到这组数据的众数,从而可以解答本题.【详解】解:∵一组数据5,8,8,12,12,12,44,∴这组数据的众数是12,故选C.【点睛】本题考查众数,解答本题的关键是明确题意,会求一组数据的众数.8、C【解析】

根据配方的步骤把x2-8x+3=0配方变为(x+m)2=n的形式,即可得答案.【详解】x2-8x+3=0移项得:x2-8x=-3等式两边同时加上一次项系数一半的平方,得x2-8x+42=-3+42配方得:(x-4)2=13∴m=-4,n=13.故选C.【点睛】此题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.9、A【解析】

根据线段垂直平分线上的点到两端点的距离相等解答.【详解】解:∵线段垂直平分线上的点到线段两个端点的距离相等,∴到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.故选:A.【点睛】本题考查了线段垂直平分线的性质,解题的关键是熟知线段垂直平分线的性质是:线段垂直平分线上的点到两端点的距离相等.10、A【解析】试题解析:∵在△ABC中,AB=,BC=,AC=,∴∴∠A=90°故选A.11、D【解析】

假设与结论相反,可假设“四边形中没有一个角是直角或钝角”.【详解】假设与结论相反;可假设“四边形中没有一个角是直角或钝角”;与之同义的有“四边形中每一个角都是锐角”;故选:D【点睛】本题考查了反证法,解题的关键在于假设与结论相反.12、D【解析】

过O作于G,于,由正方形的性质得到,求得,,得到,根据全等三角形的性质得到,故①正确;,推出,故②正确;得到四边形的面积正方形的面积,四边形的面积保持不变;故③正确;根据平行线的性质得到,,求得,得到,于是得到,故④正确.【详解】解:过O作于G,于H,∵四边形是正方形,,,,∵点O是对角线BD的中点,,,,,,,,∴四边形是正方形,,,,在与中,,,,故①正确;,,,故②正确;,∴四边形的面积正方形的面积,∴四边形的面积保持不变;故③正确;,,,,,,,,故④正确;故选:.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,平行线的性质,熟练掌握正方形的性质是解题的关键.二、填空题(每题4分,共24分)13、【解析】

直接去括号,然后移项,即可得到答案.【详解】解:∵,∴,∴,故答案为:.【点睛】本题考查了一元二次方程的一般式,解题的关键是熟练掌握一元二次方程的一般式.14、x=1【解析】【分析】一次函数y=ax+b的图象与x轴交点横坐标的值即为方程ax+b=0的解.【详解】∵一次函数y=ax+b的图象与x轴相交于点(1,0),∴关于x的方程ax+b=0的解是x=1,故答案为:x=1.【点睛】本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.15、2或【解析】

先利用等角的余角相等得到∠ABP=∠CBM,利用相似三角形的判定方法得到当时,△BAP∽△BCM,即;当时,△BAP∽△BMC,即,然后分别利用比例的性质求BM的长即可.【详解】如图,∵四边形ABCD为正方形,∴∠ABC=90°,BA=BC,∵PB⊥BF,∴∠PBM=90°,∵∠ABP+∠CBP=90°,∠CBP+∠CBM=90°,∴∠ABP=∠CBM,∴当时,△BAP∽△BCM,即,解得BM=2;当时,△BAP∽△BMC,即,解得BM=,综上所述,当BM为2或时,以B,M,C为顶点的三角形与△ABP相似.故答案为2或.【点睛】此题主要考查的是相似三角形的判定和性质,应注意相似三角形的对应顶点不明确时,要分类讨论,不要漏解.16、x≥8【解析】略17、1【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【详解】∵关于x的一元二次方程mx1+5x+m1﹣1m=0有一个根为0,∴m1﹣1m=0且m≠0,解得,m=1,故答案是:1.【点睛】本题考查了一元二次方程ax1+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.18、乙【解析】

根据方差的意义即可解答.【详解】∵S甲2=1.32>S乙2=1.26∴乙更加稳定【点睛】本题考查了方差的应用,方差是用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)的统计量.在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.三、解答题(共78分)19、(1)4;(2)①点的坐标为.②、、【解析】

(1)利用待定系数法将A点代入,即可求函数解析式的k值;(2)用三角形ABD的面积为4,列方程,即可求出a的值,可得点的坐标;(3)E的位置分三种情况分析,由平行四边形对边平行的关系,用平移规律求对应点的坐标.【详解】(1)函数的图象经过点,(2)①如图,设AC与BD交与M,点的横坐标为,点在的图象上,点的坐标为.∵轴,轴,,.∵的面积为,...点的坐标为.②∵C(1,0)∴AC=4当以ACZ作为平行四边形的边时,BE=AC=4∴∴∴、当AC作为平行四边形的对角线时,AC中点为∴BE中点为(1,2)设E(x,y)∵点的坐标为则解得:∴综上所述:在平面内存在点,使得以点、、、为顶点的四边形是平行四边形,符合条件的所有点的坐标为:、、故答案为、、【点睛】本题考察了利用待定系数法求反比例函数,以及利用三角形面积列方程求点的坐标和平行四边形的平移规律求点的坐标,解题的关键是会利用待定系数法求解析式,会用平移来求点的坐标.20、(1)1;(2);.【解析】试题分析:(1)设AB=x,根据折叠可得AP=CD=x,DP=CD-CP=x-4,利用勾股定理,在Rt△ADP中,AD2+DP2=AP2,即82+(x-4)2=x2,即可解答;(2)①过点A作AG⊥PB于点G,根据勾股定理求出PB的长,由AP=AB,所以PG=BG=PB=,在Rt△AGP中,AG=,由AG⊥PB,MH⊥PB,所以MH∥AG,根据M是PA的中点,所以H是PG的中点,根据中位线的性质得到MH=AG=.②作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据MH⊥PQ,得出HQ=PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=QB,再求出EF=PB,最后代入HF=PB即可得出线段EF的长度不变.试题解析:(1)设AB=x,则AP=CD=x,DP=CD-CP=x-4,在Rt△ADP中,AD2+DP2=AP2,即82+(x-4)2=x2,解得:x=1,即AB=1.(2)①如图2,过点A作AG⊥PB于点G,由(1)中的结论可得:PC=4,BC=8,∠C=90°,∴PB=,∵AP=AB,∴PG=BG=PB=,在Rt△AGP中,AG=,∵AG⊥PB,MH⊥PB,∴MH∥AG,∵M是PA的中点,∴H是PG的中点,∴MH=AG=.②当点M、N在移动过程中,线段FH的长度是不发生变化;作MQ∥AN,交PB于点Q,如图3,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP.∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,MH⊥PQ,∴EQ=PQ.∵MQ∥AN,∴∠QMF=∠BNF,在△MFQ和△NFB中,,∴△MFQ≌△NFB(AAS).∴QF=QB,∴HF=HQ+QF=PQ+QB=PB=.∴当点M、N在移动过程中,线段FH的长度是不发生变化,长度为.考点:四边形综合题.21、-1【解析】

先化简,再选出一个合适的整数代入即可,要注意a的取值范围.【详解】解:,当时,原式.【点睛】本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键.22、(1)(1,1);(2)D的坐标为(6,0);(3)D(2,2)或D(−6,−2)、D(10,6).【解析】

(1)直接套用中点坐标公式,即可得出中点坐标;(2)根据AC、BD的中点重合,可得出,,代入数据可得出点D的坐标;(3)分类讨论,①当AB为该平行四边形一边时,此时CD∥AB,分别求出以AD、BC为对角线时,以AC、BD为对角线的情况可得出点D坐标;②当AB为该平行四边形的一条对角线时,根据AB中点与CD中点重合,可得出点D坐标.【详解】解:(1)AB中点坐标为(,)即(1,1);(2)根据平行四边形的性质:对角线互相平分,可知AC、BD的中点重合,由中点坐标公式可得:,,代入数据得:,,解得:xD=6,yD=0,所以点D的坐标为(6,0);(3)①当AB为该平行四边形一边时,则CD∥AB,对角线为AD、BC或AC、BD;故可得:,或,,故可得yC−yD=yA−yB=2或yD−yC=yA−yB=−2,∵yC=0,∴yD=2或−2,代入到y=x+1中,可得D(2,2)或D(−6,−2).当AB为该平行四边形的一条对角线时,则CD为另一条对角线;,,∴yC+yD=yA+yB=2+4,∵yC=0,∴yD=6,代入到y=x+1中,可得D(10,6)综上,符合条件的D点坐标为D(2,2)或D(−6,−2)、D(10,6).【点睛】本题考查了一次函数的综合题,涉及了中点坐标公式、平行四边形的性质,难点在第三问,注意分类讨论,不要漏解,难度较大.23、(1)1;(1)证明见解析;(3)≤OD≤1.【解析】

(1)画出图形,根据DE垂直平分BC,可得出DE是△BOA的中位线,从而利用中位线的性质求出DE的长度;(1)先根据中垂线的性质得出DB=DC,EB=EC,然后结合CE∥OB判断出BE∥DC,得出四边形BDCE为平行四边形,结合DB=DC可得出结论.(3)求两个极值点,①当点C与点A重合时,OD取得最小值,②当点C与点O重合时,OD取得最大值,继而可得出OD的取值范围.【详解】解:∵直线AB的解析式为y=﹣1x+4,∴点A的坐标为(1,0),点B的坐标为(0,4),即可得OB=4,OA=1,(1)当点C与点O重合时如图所示,∵DE垂直平分BC(BO),∴DE是△BOA的中位线,∴DE=OA=1;故答案为:1;(1)当CE∥OB时,如图所示:∵DE为BC的中垂线,∴BD=CD,EB=EC,∴∠DBC=∠DCB,∠EBC=∠ECB,∴∠DCE=∠DBE,∵CE∥OB,∴∠CEA=∠DBE,∴∠CEA=∠DCE,∴BE∥DC,∴四边形BDCE为平行四边形,又∵BD=CD,∴四边形BDCE为菱形.(3)当点C与点O重合时,OD取得最大值,此时OD=OB=1;当点C与点A重合时,OD取得最小值,如图所示:在Rt△AOB中,AB==1,∵DE垂直平分BC(BA),∴BE=BA=,易证△BDE∽△BAO,∴,即,解得:BD=,则OD=OB﹣BD=4﹣=.综上可得:≤OD≤1.【点睛】本题考查一次函数综合题.24、(1)见解析;(2)见解析;(3)【解析】

(1)利用尺规作出∠ABC的角平分线即可.(2)利用尺规作出线段BD的垂直平分线即可.(3)根据等腰三角形的定义判断即可.【详解】(1)射线BD即为所求.(2)直线EF即为所求.(3)△BDE,△BDF,△BEF是等腰三角形.【点睛】本题考查作图-复杂作图,线段的垂直平分线,角平分线的定义等知识,解题的关键是熟练掌握基本知识.25、(1)证明见解析;(2)四边形EFGH是菱形,证明见解析;(3)四边形EFGH是正方形.【解析】

(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.(2)四边形EFGH是菱形.先证明△APC≌△BPD,得到AC=BD,再证明EF=FG即可.(3)四边形EFGH是正方形,只要证明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.【详解】(1)证明:如图1中,连接BD.∵点E,H分别为边AB,DA的中点,∴EH∥BD,EH=BD,∵点F,G分别为边BC,CD的中点,∴FG∥BD,FG=BD,∴EH∥FG,EH=GF,∴中点四边形EFGH是平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论