版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年山东省淄博市沂源县数学八年级下册期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图所示,正方形ABCD的边长为6,M在DC上,且DM=4,N是AC上的动点,则DN+MN的最小值是()A. B. C. D.2.下列条件,不能判断四边形是平行四边形的是()A., B.,C., D.,3.将直线y=2x﹣1向上平移2个单位长度,可得直线的解析式为()A.y=2x﹣3 B.y=2x﹣2 C.y=2x+1 D.y=2x4.下列式子一定成立的是()A. B. C. D.5.已知关于x的不等式组的整数解共有2个,则整数a的取值是()A.﹣2 B.﹣1 C.0 D.16.若一个多边形的内角和小于其外角和,则这个多边形的边数是()A.3 B.4 C.5 D.67.已知关于x的一元二次方程x2﹣2kx+6=0有两个相等的实数根,则k的值为()A.±2 B.± C.2或3 D.或8.下列计算正确的是()A. B. C. D.9.甲、乙二人在相同情况下,各射靶10次,两人命中环数的平均数都是7,方差S甲2=3,S乙A.甲 B.乙 C.一样 D.不能确定10.如图,在△ABC中,∠C=90°,点E是斜边AB的中点,ED⊥AB,且∠CAD:∠BAD=5:2,则∠BAC=()A.60° B.70° C.80° D.90°11.下列多项式能用完全平方公式进行分解因式的是()A. B.C. D.12.使代数式有意义的x的取值范围是()A. B. C. D.二、填空题(每题4分,共24分)13.如图所示,工人师傅做一个矩形铝合金窗框分下面三个步骤进行先截出两对符合规格的铝合金窗料(如图①所示),使AB=CD,EF=GH.(1)摆放成如图②的四边形,则这时窗框的形状是平行四边形,它的依据是.(2)将直尺紧靠窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④,说明窗框合格,这时窗框是矩形,它的依据是.14.如图,菱形ABCD的对角线AC=3cm,BD=4cm,则菱形ABCD的面积是_____.15.方程的解为_____.16.如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为______.17.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有_____.18.若一个三角形的三边长为6,8,10,则最长边上的高是____________.三、解答题(共78分)19.(8分)求不等式组的正整数解.20.(8分)如图,已知线段AC、BC,利用尺规作一点O,使得点O到点A、B、C的距离均相等.(保留作图痕迹,不写作法)21.(8分)如图,已知一次函数y=x−3与反比例函数y=的图象相交于点A(4,n),与x轴相交于点B.(1)填空:n的值为___,k的值为___;(2)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;(3)观察反比例函数y=的图象,当y⩾−2时,请直接写出自变量x的取值范围。22.(10分)已知,,为的三边长,并且满足条件,试判断的形状.23.(10分)如图,已知A(﹣4,n),B(1,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.、(1)求△AOB的面积;(2)求不等式kx+b﹣<0的解集(请直接写出答案).24.(10分)为提高市民的精神生活美化城市环境,城市管理局从外地新进一批绿化树苗,现有两种运输方式可供选择,方式一:使用快递公司的邮车运输,装卸收费500元,另外每公里再加收5元;方式二:使用铁路运输公司的火车运输,装卸收费900元,另外每公里再加收3元.(1)请分别写出邮车、火车运输的总费用为(元)、(元)与运输路程(公里)之间的函数关系式;(2)你认为选用哪种运输方式较好,为什么?25.(12分)已知一次函数y=(m﹣2)x﹣3m2+12,问:(1)m为何值时,函数图象过原点?(2)m为何值时,函数图象平行于直线y=2x?26.以△ABC的三边在BC同侧分别作三个等边三角形△ABD,△BCE,△ACF,试回答下列问题:(1)四边形ADEF是什么四边形?请证明:(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,四边形ADEF是菱形?(4)当△ABC满足什么条件时,能否构成正方形?(5)当△ABC满足什么条件时,无法构成四边形?
参考答案一、选择题(每题4分,共48分)1、B【解析】
连BD,BM,BM交AC于N′,根据正方形的性质得到B点与D点关于AC对称,则有N′D+N′M=BM,利用两点之间线段最短得到BM为DN+MN的最小值,然后根据勾股定理计算即可.【详解】连BD,BM,BM交AC于N′,如图,∵四边形ABCD为正方形,∴B点与D点关于AC对称,∴N′D=N′B,∴N′D+N′M=BM,∴当N点运动到N′时,它到D点与M点的距离之和最小,最小距离等于MB的长,而BC=CD=6,DM=4,∴MC=2,∴BM=.故选:B.【点睛】此题考查轴对称-最短路线问题,勾股定理,正方形的性质,解题关键在于作辅助线.2、D【解析】
根据平行四边形的判定方法一一判断即可.【详解】解:A、由AB∥CD,AB=CD可以判断四边形ABCD是平行四边形;B、由AB=CD,BC=AD可以判断四边形ABCD是平行四边形;C、由∠A=∠C,AD∥BC,可以推出∠B=∠D,可以判断四边形ABCD是平行四边形;D、由AB∥CD,∠A=∠B不可以判断四边形ABCD是平行四边形;故选:D.【点睛】本题考查平行四边形的判定,解题的关键是熟练掌握平行四边形的判定方法,属于中考常考题型.3、C【解析】
根据一次函数的平移规律即可解答.【详解】∵原直线的k=2,b=﹣1;向上平移2个单位长度,得到了新直线,∴新直线的k=2,b=﹣1+2=1.∴新直线的解析式为y=2x+1.故选C.【点睛】本题考查了一次函数的平移规律,熟知一次函数的平移规律是解决问题的关键.4、D【解析】
根据平方根、二次根式的加法及二次根式有意义的条件即可得到答案.【详解】A.因为不知道a是否为正数,所以不能得到;B.因为不知道a,b是否同为正数或负数,所以不能得到;C.因为,所以错误;D.因为,所以正确.故选择D.【点睛】本题考查平方根、二次根式的加法及二次根式有意义的条件,解题的关键是掌握平方根、二次根式的加法及二次根式有意义的条件.5、C【解析】分析:先用a表示出不等式组的整数解,再根据不等式组的整数解有2个可得出a的取值范围.解:,由①得,x≥a,由②得,x≤1,故不等式组的解集为:a≤x≤1,∵不等式的整数解有2个,∴其整数解为:1,1,∵a为整数,∴a=1.故选C.6、A【解析】试题分析:∵多边形的外角和是360度,多边形的内角和等于它的外角和,则内角和是360度,∴这个多边形是四边形.故选B.考点:多边形内角与外角.7、B【解析】
利用判别式的意义得到△=(﹣2k)2﹣4×6=0,然后解关于k的方程即可.【详解】解:根据题意得△=(﹣2k)2﹣4×6=0,解得k=±.故选:B.【点睛】本题考查根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.8、C【解析】
根据二次根式的加法法则判断A、B;根据二次根式的乘法法则判断C;根据二次根式的除法法则判断D.【详解】A、不是同类二次根式,不能合并,故本选项错误;B、不能合并,故本选项错误;C、故本选项正确;D、故本选项错误;故选:C.【点睛】本题考查了二次根式的运算,掌握运算法则是解题的关键.9、B【解析】
根据方差的定义,方差越小数据越稳定.【详解】解:∵两人命中环数的平均数都是7,方差S甲2=3,S乙2=1.8,∴S甲2>S乙2,∴射击成绩较稳定的是乙;故选:B.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.10、B【解析】点E是斜边AB的中点,ED⊥AB,∠B=∠DAB,∠DAB=2x,故2x+2x+5x=90°,故x=10°,∠BAC=70°.故选B.11、C【解析】
利用完全平方公式的结构特征判断即可得到结果.【详解】解:A选项为偶次方和1的和,不能因式分解;B选项不能因式分解;C选项x2-2x+1=(x-1)2,可以因式分解;D选项不能因式分解.故选C.【点睛】本题题考查了因式分解一运用公式法,熟练掌握完全平方公式以及因式分解的概念是解本题的关键.12、A【解析】
根据二次根式被开方数为非负数可得关于x的不等式,解不等式即可得.【详解】使代数式有意义,则x-10≥0,解得:x≥10,故选A.【点睛】本题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.二、填空题(每题4分,共24分)13、【答题空1】两组对边分别相等的四边形是平行四边形【答题空2】有一个角是直角的平行四边形是矩形【解析】
(1)∵AB=CD,EF=GH,∴四边形为平行四边形.(两组对边相等的四边形为平行四边形)(2)由(2)知四边形为平行四边形,∵∠C为直角,∴四边形为矩形.(一个角为直角的平行四边形为矩形)【点睛】根据平行四边形的判定,两组对边分别相等的四边形为平行四边形,即可得出②的结论,当把一个角变为直角时,根据一个角为直角的平行四边形为矩形即可得出③的结论.14、11cm1【解析】
利用菱形的面积公式可求解.【详解】解:因为菱形的对角线互相垂直平分,∵AC=cm,BD=cm,则菱形ABCD的面积是cm1.故答案为11cm1.【点睛】此题主要考查菱形的面积计算,关键是掌握菱形的面积计算方法.15、1【解析】
根据无理方程的解法,首先,两边平方解出x的值,然后验根,解答即可.【详解】解:两边平方得:2x+1=x2∴x2﹣2x﹣1=0,解方程得:x1=1,x2=﹣1,检验:当x1=1时,方程的左边=右边,所以x1=1为原方程的解,当x2=﹣1时,原方程的左边≠右边,所以x2=﹣1不是原方程的解.故答案为1.【点睛】此题考查无理方程的解,解题关键在于掌握运算法则16、3;【解析】
根据矩形是中心对称图形寻找思路:△OBF≌△ODE,图中阴影部分的面积就是△ADC的面积.【详解】根据矩形的性质得△OBF≌△ODE,
属于图中阴影部分的面积就是△ADC的面积.
S△ADC=CD×AD=×2×3=3.
故图中阴影部分的面积是3.【点睛】本题考查全等三角形的判定与性质、矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质.17、1【解析】
∵骑车的学生所占的百分比是×100%=35%,∴步行的学生所占的百分比是1﹣10%﹣15%﹣35%=40%,∴若该校共有学生1500人,则据此估计步行的有1500×40%=1(人),故答案为1.18、4.1【解析】分析:首先根据勾股定理的逆定理可判定此三角形是直角三角形,再根据三角形的面积公式求得其最长边上的高.详解:∵三角形的三边长分别为6,1,10,符合勾股定理的逆定理62+12=102,∴此三角形为直角三角形,则10为直角三角形的斜边,设三角形最长边上的高是h,根据三角形的面积公式得:×6×1=×10h,解得:h=4.1.故答案为:4.1.点睛:考查了勾股定理的逆定理,解答此题的关键是先判断出三角形的形状,再根据三角形的面积公式解答.三、解答题(共78分)19、正整数解是1,2,3,1.【解析】
先分别求出每一个不等式的解集,然后根据不等式组解集的确定方法得到解集,即可得到正整数解.【详解】解:,解不等式①,得x>﹣2,解不等式②,得x≤,不等式组的解集是﹣2<x≤,不等式组的正整数解是1,2,3,1.【点睛】本题考查了解一元一次不等式组,熟知一元一次不等式组的解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键.20、见解析.【解析】
作BC,AC的垂直平分线,它们的交点O到点A、B、C的距离均相等.【详解】如图所示,点O即为所求.【点睛】本题主要考查了复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.21、(1)n=3,k=12;(2)(4+,3);(3)x⩽−6或x>0.【解析】
(1)把点A(4,n)代入一次函数y=x-3,得到n的值为3;再把点A(4,3)代入反比例函数y=,得到k的值为12;(2)根据坐标轴上点的坐标特征可得点B的坐标为(2,0),过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,根据勾股定理得到AB=,根据AAS可得△ABE≌△DCF,根据菱形的性质和全等三角形的性质可得点D的坐标;(3)根据反比例函数的性质即可得到当y≥-2时,自变量x的取值范围.【详解】(1)把点A(4,n)代入一次函数y=x−3,可得n=×4−3=3;把点A(4,3)代入反比例函数y=,可得3=,解得k=12.(2)∵一次函数y=x−3与x轴相交于点B,∴x−3=0,解得x=2,∴点B的坐标为(2,0),如图,过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,∵A(4,3),B(2,0),∴OE=4,AE=3,OB=2,∴BE=OE−OB=4−2=2,在Rt△ABE中,AB=,∵四边形ABCD是菱形,∴AB=CD=BC=,AB∥CD,∴∠ABE=∠DCF,∵AE⊥x轴,DF⊥x轴,∴∠AEB=∠DFC=90°,在△ABE与△DCF中,,∴△ABE≌△DCF(ASA),∴CF=BE=2,DF=AE=3,∴OF=OB+BC+CF=2++2=4+,∴点D的坐标为(4+,3).(3)当y=−2时,−2=,解得x=−6.故当y⩾−2时,自变量x的取值范围是x⩽−6或x>0.【点睛】此题考查反比例函数综合题,解题关键在于作辅助线22、等腰三角形或直角三角形等腰直角三角形.【解析】
对已知等式运用因式分解变形,得到,即a-b=0或a2+b2=c2,通过分析判断即可解决问题.【详解】解:,,,,则a-b=0或a2+b2=c2,
当a-b=0时,△ABC为等腰三角形;
当a2+b2=c2时,△ABC为直角三角形.当a-b=0且a2+b2=c2时,△ABC为等腰直角三角形.综上所述,△ABC为等腰三角形或直角三角形或等腰直角三角形.【点睛】本题主要考查了因式分解在几何中的应用问题;解题的关键是:灵活变形、准确分解、正确判断.23、(1);(2)﹣4<x<0或x>1【解析】
(1)将B坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;将A坐标代入反比例解析式求出n的值,确定出A的坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;对于直线AB,令y=0求出x的值,即可确定出C坐标,三角形AOB面积=三角形AOC面积+三角形BOC面积,求出即可;(2)由两函数交点A与B的横坐标,利用图象即可求出所求不等式的解集.【详解】解:(1)∵反比例函数y=(m≠0)过点B(1,﹣4),∴m=1×(﹣4)=﹣4,∴y=﹣,将x=﹣4,y=n代入反比例解析式得:n=1,∴A(﹣4,1),∴将A与B坐标代入一次函数解析式得:k+b=-4,-4k+b=1,解得:k=-1,b=-3,∴y=﹣x﹣3;在直线y=﹣x﹣3中,当y=0时,x=﹣3,∴C(﹣3,0),即OC=3,∴S△AOB=S△AOC+S△COB=(3×1+3×4)=;(2)不等式kx+b﹣<0的解集是﹣4<x<0或x>1.【点睛】本题考查待定系数法求一次函数解析式;待定系数法求反比例函数解析式;反比例函数与图形的面积计算;反比例函数与一次函数的结合交点问题求x的范围,学生们熟练掌握解析一次函数和反比例函数表达式的方法同时观察图象是解题的关键.24、(1),;(2)当运输路程等于200千米时,,用两种运输方式一样;当运输路程小于200千米时,,用邮车运输较好;当运输路程大于200千米时,,用火车运输较好.【解析】
(1)根据方式一、二的收费标准即可得出y1(元)、y2(元)与运输路程x(公里)之间的函数关系式.(2)比较两种方式的收费多少与x的变化之间的关系,从而根据x的不同选择合适的运输方式.【详解】解:(1)由题意得:,;(2)令,解得,∴当运输路程等于200千米时,,用两种运输方式一样;当运输路程小于200千米时,,用邮车运输较好;当运输路程大于200千米时,,用火车运输较好.【点睛】此题考查了一次函数的应用,解答本题的关键是根据题意所述两种运输方式的收费标准,得出总费用y1(元)、y2(元)与运输路程x(公里)关系式.25、(1)m=﹣2;(2)m=4.【解析】
(1)根据图象经过原点b=0,列出关于m的方程解方程求m的值,再根据k≠0舍去不符合题意的解;(2)根据两直线平行k值相等,得出关于m的方程,解方程即可.【详解】(1)∵一次函数图象经过原点,∴﹣3m2+12=0且m﹣2≠0,解﹣3m2+12=0得m=±2,又由m﹣2≠0得m≠2,∴m=-2;(2)∵函数图象平行于直线y=2x,∴m﹣2=2,解得m=4.【点睛】本题考查一次函数与坐标轴交点问题,根据一次函数的增减性求参数.(1)中需注意一次函数的一次项系数k≠0;(2)中理解两个一次函数平行k值相等是解题关键.26、(1)见解析;(2)当△ABC中的∠BAC=150°时,四边形ADEF是矩形;(3)当△ABC中的AB=AC时,四边形ADEF是菱形;(4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 石河子大学《专业外语文献阅读与写作一》2021-2022学年第一学期期末试卷
- 石河子大学《药物分析家庭安全合理用药》2022-2023学年第一学期期末试卷
- 布草洗涤承包合同
- 石河子大学《食品分析实验》2023-2024学年第一学期期末试卷
- 老年病及预防教案中班
- 沈阳理工大学《三维工程软件实训》2021-2022学年期末试卷
- 沈阳理工大学《建筑结构选型》2022-2023学年第一学期期末试卷
- 2018年四川内江中考满分作文《我心中的英雄》3
- 沈阳理工大学《电工与电子技术》2023-2024学年期末试卷
- 光伏承包合伙合同与合伙协议书
- 课题开题汇报(省级课题)
- 清真食品安全管理制度
- 学校心理健康教育合作协议书
- 2024江苏省沿海开发集团限公司招聘23人(高频重点提升专题训练)共500题附带答案详解
- 2024年初级社会体育指导员(游泳)技能鉴定考试题库(含答案)
- 湖北省危险废物监管物联网系统管理计划填报说明
- Unit6ADayintheLife教学设计2024-2025学年人教版(2024)英语七年级上册
- 苏教版三年级上册数学期末考试试卷及解析答案
- 2024年个人劳务承包合同书
- 知道网课智慧《睡眠医学(广州医科大学)》测试答案
- 如果历史是一群喵课件
评论
0/150
提交评论