2024届河南省新乡七中学八年级数学第二学期期末达标检测试题含解析_第1页
2024届河南省新乡七中学八年级数学第二学期期末达标检测试题含解析_第2页
2024届河南省新乡七中学八年级数学第二学期期末达标检测试题含解析_第3页
2024届河南省新乡七中学八年级数学第二学期期末达标检测试题含解析_第4页
2024届河南省新乡七中学八年级数学第二学期期末达标检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河南省新乡七中学八年级数学第二学期期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,有一块直角三角形纸片,两直角边AB=6,BC=8,将△ABC折叠,使AB落在斜边AC上,折痕为AD,则BD的长为()A.6 B.5 C.4 D.32.已知△ABC的三边分别是a、b、c,下列条件中不能判断△ABC为直角三角形的是()A.a2+b2=c2 B.∠A+∠B=90°C.a=3,b=4,c=5 D.∠A:∠B:∠C=3:4:53.如图,的一边在轴上,长为5,且,反比例函数和分别经过点,,则的周长为A.12 B.14 C. D.4.若分式的值为0,则的值是()A. B. C. D.5.下列各数:其中无理数的个数是()A.4 B.3 C.2 D.16.点A(x1,y1),B(x2,y2)在反比例函数y=的图象上,当x1<0<x2时,y1>y2,则k的取值围是()A.k< B.k> C.k<2 D.k>27.已知函数y=kx-k的图象如图所示,则k的取值为()A.k<0 B.k>0 C.k≥0 D.k≤08.下列式子中,属于最简二次根式的是()A. B. C. D.9.下列计算错误的是()A.﹣= B.÷2=C. D.3+2=510.如图,在中,度.以的三边为边分别向外作等边三角形,,,若,的面积分别是8和3,则的面积是()A. B. C. D.5二、填空题(每小题3分,共24分)11.一次函数图象经过一、三、四象限,则反比例函数的函数值随的增大而__________.(填增大或减小)12.计算:=_______.13.如图,在平行四边形中,,.以点为圆心,适当长为半径画弧,交于点,交于点,再分别以点,为圆心,大于的长为半径画弧,两弧相交于点,射线交的延长线于点,则的长是____________.14.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AB=10,将△ABC沿CB方向向右平移得到△DEF.若四边形ABED的面积为20,则平移距离为___________.15.如图,点D、E、F分别是△ABC各边的中点,连接DE、EF、DF,若△ABC的周长为10,则△DEF的周长为_______________.16.若二次函数y=mx2-(2m-1)x+m的图像顶点在y轴上,则m=.17.点P(a,a-3)在第四象限,则a的取值范围是_____.18.分式和的最简公分母是__________.三、解答题(共66分)19.(10分)如图,点、分别在、上,分别交、于点、,,.(1)求证:四边形是平行四边形;(2)已知,连接,若平分,求的长.20.(6分)甲、乙两个筑路队共同承担一段一级路的施工任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用15天.且甲队单独施工60天和乙队单独施工40天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)若甲、乙两队共同工作了4天后,乙队因设备检修停止施工,由甲队单独继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?21.(6分)化简求值:,其中x=1.22.(8分)如图,已知正方形ABCD的边长为6,点E、F分别在BC、DC上,CE=DF=2,DE与AF相交于点G,点H为AE的中点,连接GH.(1)求证:△ADF≌△DCE;(2)求GH的长.23.(8分)已知:,与成正比例,与成反比例,且时,;时.(1)求关于的函数关系式.(2)求时,的值.24.(8分)为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?25.(10分)如右图所示,直线y1=-2x+3和直线y2=mx-1分别交y轴于点A,B,两直线交于点C(1,n).(1)求m,n的值;(2)求ΔABC的面积;(3)请根据图象直接写出:当y1<y2时,自变量的取值范围.26.(10分)(1)如图,正方形ABCD中,∠PCG=45°,且PD=BG,求证:FP=FC.(2)如图,正方形ABCD中,∠PCG=45°,延长PG交CB的延长线于点F,(1)中的结论还成立吗?请说明理由.(3)在(2)的条件下,作FE⊥PC,垂足为E,交CG于点N,连接DN,求∠NDC的度数.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

设点B落在AC上的E点处,连接DE,如图所示,由三角形ABC为直角三角形,由AB与BC的长,利用勾股定理求出AC的长,设BD=x,由折叠的性质得到ED=BD=x,AE=AB=6,进而表示出CE与CD,在直角三角形DEC中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出BD的长.【详解】解:∵△ABC为直角三角形,AB=6,BC=8,∴根据勾股定理得:,设BD=x,由折叠可知:ED=BD=x,AE=AB=6,可得:CE=AC-AE=10-6=4,CD=BC-BD=8-x,在Rt△CDB'中,根据勾股定理得:(8-x)2=42+x2,解得:x=1,则BD=1.故答案为:1.【点睛】此题考查了勾股定理,利用了方程的思想,熟练掌握勾股定理的解本题的关键.2、D【解析】分析:利用直角三角形的定义和勾股定理的逆定理逐项判断即可.详解:A.a2=b2+c2,符合勾股定理的逆定理,能够判定△ABC为直角三角形,不符合题意;B.∠A+∠B=∠C,此时∠C是直角,能够判定△ABC是直角三角形,不符合题意;C.52=32+42,符合勾股定理的逆定理,能够判定△ABC为直角三角形,不符合题意;D.∠A:∠B:∠C=3:4:5,那么∠A=45°、∠B=60°、∠C=75°,△ABC不是直角三角形;故选D.点睛:此题主要考查了直角三角形的判定方法,只有三角形的三边长构成勾股数或三个内角中有一个是直角的情况下,才能判定三角形是直角三角形.3、B【解析】

设点,则点,,然后根据的长列出方程,求得的值,得到的坐标,解直角三角形求得,就可以求得的周长。【详解】解:设点,则点,,,四边形是平行四边形,,,解得,,作于,则,,,的周长,故选:.【点睛】本题考查了反比例函数图象上点的坐标特征,平行四边形的性质,用点,的横坐标之差表示出的长度是解题的关键.4、A【解析】

解:根据分式为0的条件,要使分式的值为0,必须.解得故选A.5、D【解析】

依据无理数的三种常见类型进行判断即可.【详解】解:在中,是无理数,有1个,故选:D.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.6、B【解析】

根据当x1<0<x2时,y1>y2可得双曲线在第二,四象限,1-2k<0,列出方程求解即可.【详解】解:∵A(x1,y1),B(x2,y2)在反比例函数y=的图象上,又∵x1<0<x2时,y1>y2,∴函数图象在二四象限,∴1﹣2k<0,∴k>,故选B.【点睛】本题考查了反比例函数图象上点的坐标特征,得出1-2k<0是关键,较为简单.7、A【解析】

根据一次函数的性质:当k<0时,函数y=kx-k中y随着x的增加而减小,可确定k的取值范围,再根据图像与y轴的交点即可得出答案.【详解】由图象知:函数y=kx-k中y随着x的增大而减小,所以k<0,∵交与y轴的正半轴,∴-k>0,∴k<0,故选:A.【点睛】考查了一次函数的图象与系数的关系,解题的关键是了解图象与系数的关系,难度不大.对于一次函数y=kx+b(k为常数,k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.当b>0,图像与y轴的正半轴相交,当b<0,图像与y轴的负半轴相交.8、B【解析】

根据最简二次根式的定义判断即可.【详解】解:A、,不是最简二次根式,故A选项错误;B、是最简二次根式,故B选项正确;C、,不是最简二次根式,故C选项错误;D、,不是最简二次根式,故D选项错误.【点睛】此题考查最简二次根式问题,在判断最简二次根式的过程中要注意:

(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;

(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.9、D【解析】

利用二次根式加减乘除的运算方法逐一计算得出答案,进一步比较选择即可【详解】A.﹣=,此选项计算正确;B.÷2=,此选项计算正确;C.,此选项计算正确;D.3+2.此选项不能进行计算,故错误故选D【点睛】此题考查二次根式的混合运算,掌握运算法则是解题关键10、D【解析】

先设AC=b,BC=a,AB=c,根据勾股定理有c2+b2=a2,再根据等式性质可得c2+b2=a2,再根据等边三角形的性质以及特殊三角函数值,易求得S3=×sin60°a•a=a2,同理可求S2=b2,S1=c2,从而可得S1+S2=S3,易求S1.【详解】解:如图,设等边三角形△A'BC,△AB'C,△ABC'的面积分别是S3,S2,S1,设AC=b,BC=a,AB=c,∵△ABC是直角三角形,且∠BAC=90度,∴c2+b2=a2,∴c2+b2=a2,又∵S3=×sin60°a•a=a2,同理可求S2=b2,S1=c2,∴S1+S2=S3,∵S3=8,S2=3,∴S1=S3−S2=8−3=5,故选:D.【点睛】本题考查了勾股定理,等边三角形的性质、特殊三角函数值的应用.解题关键是根据等边三角形的性质求出每一个三角形的面积.二、填空题(每小题3分,共24分)11、增大【解析】

根据一次函数图象经过一、三、四象限,可以得出>0,b<0,则反比例函数的系数,结合x>0即可得到结论.【详解】∵一次函数图象经过一、三、四象限,∴>0,b<0,∴,∴又x>0,∴反比例函数图象在第四象限,且y随着x的增大而增大,故答案为:增大.【点睛】本题考查了一次函数的图象和性质,反比例函数的图象和性质,掌握一次函数,反比例函数的图象和性质是解题的关键.12、2+1【解析】试题解析:=.故答案为.13、3【解析】

根据角平分线的作图和平行四边形的性质以及等腰三角形的判定和性质解答即可.【详解】由作图可知:BH是∠ABC的角平分线,

∴∠ABG=∠GBC,

∵平行四边形ABCD,

∴AD∥BC,

∴∠AGB=∠GBC,

∴∠ABG=∠AGB,

∴AG=AB=4,

∴GD=AD=AG=7-4=3,

∵平行四边形ABCD,

∴AB∥CD,

∴∠H=∠ABH=∠AGB,

∵∠AGB=∠HGD,

∴∠H=∠HGD,

∴DH=GD=3,

故答案为:3.【点睛】此题考查角平分线的做法,平行四边形的性质,熟练根据角平分线的性质得出∠ABG=∠GBC是解题关键.14、1【解析】

先根据含30度的直角三角形三边的关系得到AC,再根据平移的性质得AD=BE,ADBE,于是可判断四边形ABED为平行四边形,则根据平行四边形的面积公式得到BE的方程,则可计算出BE=1,即得平移距离.【详解】解:在Rt△ABC中,∵∠ABC=30°,∴AC=AB=5,∵△ABC沿CB向右平移得到△DEF,∴AD=BE,ADBE,∴四边形ABED为平行四边形,∵四边形ABED的面积等于20,∴AC•BE=20,即5BE=20,∴BE=1,即平移距离等于1.故答案为:1.【点睛】本题考查了含30°角的直角三角形的性质,平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.也考查了平行四边形的判定与性质.15、1【解析】

解:根据三角形的中位线定理可得DE=AC,EF=AB,DF=BC所以△DEF的周长为△ABC的周长的一半,即△DEF的周长为1故答案为:1.【点睛】本题考查三角形的中位线定理.16、1【解析】试题分析:由二次函数y=mx2-(2m-1)x+m的图像顶点在y轴上知,该二次函数的对称轴是直线x=0,根据二次函数对称轴的公式x=-b-2m-1=0考点:二次函数对称轴点评:本题属于简单的公式应用题,相对来说比较简单,但是仍然要求学生对相应的公式牢记并理解,注意公式中各字母表示的含义。17、0<a<3【解析】

根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).【详解】∵点P(a,a-3)在第四象限,∴,解得0<a<3.18、【解析】

根据最简公分母的确定方法取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母进行解答.【详解】解:分式和的最简公分母是故答案为:.【点睛】本题考查的是最简公分母的概念,取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.三、解答题(共66分)19、(1)见解析;(2).【解析】

(1)先证得,再利用等量代换证得,证得,即可证明绪论;(2)利用角平分线的定义和平行线的定义可证得,可求得.【详解】(1)∵,∴,,又∵,∴,∴,∴四边形是平行四边形;(2)∵平分,∴,∵,∴,∴,∴,又∵,∴.【点睛】本题考查了平行四边形的判定和性质,角平分线的性质,平行线的性质,熟练掌握平行四边形的判定与性质是解本题的关键.20、(1)甲队单独完成此项任务需15天,乙队单独完成此项任务需30天;(2)1天【解析】

(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+15)天,根据甲队单独施工15天和乙队单独施工10天的工作量相同建立方程求出其解即可;(2)设甲队再单独施工y天,根据甲队总的工作量不少于乙队的工作量的2倍建立不等式求出其解即可.【详解】解:(1)设乙队单独完成此项任务需x天,则甲队单独完成此项任务需(x+15)天根据题意得经检验x=30是原方程的解,则x+15=15(天)答:甲队单独完成此项任务需15天,乙队单独完成此项任务需30天.(2)解:设甲队再单独施工y天,依题意,得,解得y≥1.答:甲队至少再单独施工1天.【点睛】此题主要考查分式方程、一元一次方程的应用,解题的关键是根据题意找到数量关系列式求解.21、3x+2,2.【解析】

先将括号内异分母分式通分计算,再将除法变乘法,约分化简,再代入数据计算.【详解】解:原式===3x+2,当x=1时,原式=2.【点睛】本题考查分式的化简求值,熟练掌握分式的通分与约分是解题的关键.22、(1)详见解析;(2)【解析】

(1)根据正方形的性质可得AD=DC,∠ADC=∠C=90°,然后即可利用SAS证得结论;(2)根据全等三角形的性质和余角的性质可得∠DGF=90°,根据勾股定理易求得AE的长,然后根据直角三角形斜边中线的性质即得结果.【详解】(1)证明:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°,∵DF=CE,∴△ADF≌△DCE(SAS);(2)解:∵△ADF≌△DCE,∴∠DAF=∠CDE,∵∠DAF+∠DFA=90°,∴∠CDE+∠DFA=90°,∴∠DGF=90°,∴∠AGE=90°,∵AB=BC=6,EC=2,∴BE=4,∵∠B=90°,∴AE==,∵点H为AE的中点,∴GH=.【点睛】本题考查了正方形的性质、全等三角形的判定和性质、勾股定理和直角三角形的性质等知识,属于常见题型,熟练掌握上述基本知识是解题的关键.23、(1),(2).【解析】

(1)先由y与成正比例函数关系,y与x成反比例函数关系可设,,进而得到;再将x=1,y=3和x=-1,y=1分別代入得到再求解即可(2)将代入函数表达式计算,即可求出y的值【详解】(1)设,,,,把,代入得:①,把代入得:②,①,②联立,解得:,,即关于的函数关系式为,(2)把代入,解得.【点睛】此题考查待定系数法求正比例函数解析式,待定系数法求一次函数解析式,待定系数法求反比例函数解析式,解题关键在于设,24、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;(3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.【解析】

详解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得x+2y=解得x=答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10-a)辆,由题意得100a+15010-a解得:6≤a≤8,因为a是整数,所以a=6,7,8;则(10-a)=4,3,2;三种方案:①购买A型公交车6辆,B型公交车4辆;②购买A型公交车7辆,B型公交车3辆;③购买A型公交车8辆,B型公交车2辆.(3)①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;故购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.【点睛】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.25、(1)n=1,m=2;(2)2;(3)当y1<y2时,x>1.【解析】

(1)利用待定系数法把点坐标代入可算出的值,然后再把点坐标代入可算出的值;(2)首先根据函数解析式计算出两点坐标,然后再根据三点坐标求出的面积;(3)根据点坐标,结合一次函数与不等式的关系可得出答案.【详解】解:(1)∵点C(1,n)在直线y1=-2x+3上,∴n=-2×1+3=1,∴C(1,1),∵y2=mx-1过点C(1,1),∴1=m-1,解得m=2.(2)当x=0时,y1=-2x+3=3,则A(0,3),当x=0时,y2=2x-1=-1,则B(0,-1),∴ΔABC的面积为×4×1=2.(3)∵C(1,1),∴当y1<y2时,x>1.【点睛】此题主要考查了两函数图象相交问题,以及一次函数与不等式的关系,关键是认真分析图象,能从图象中得到正确信息.26、(1)见解析;(2)成立,理由见解析;(3)∠NDC=45°.【解析】

(1)根据已知条件易证△BCG≌△DCP,由全等三角形的性质可得CP=CG,∠BCG=∠DCP,即可求得∠DCP=∠BCG=22.5°,所以∠PCF=∠PCG+∠BCG=67.5°;在△PCG中,根据等腰三角形的性质及三角形的内角和定理求得∠CPG=67.5°,即可得∠CPG=∠PCF,由此证得PF=CF;(2)过点C作CH⊥CG交AD的延长线于H,先证得△BCG≌△DCH,可得CG=CH,再证得∠P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论