2024年山东省青岛市青岛实验数学八年级下册期末经典模拟试题含解析_第1页
2024年山东省青岛市青岛实验数学八年级下册期末经典模拟试题含解析_第2页
2024年山东省青岛市青岛实验数学八年级下册期末经典模拟试题含解析_第3页
2024年山东省青岛市青岛实验数学八年级下册期末经典模拟试题含解析_第4页
2024年山东省青岛市青岛实验数学八年级下册期末经典模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年山东省青岛市青岛实验数学八年级下册期末经典模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列各式中计算正确的是()A.=(﹣2)×(﹣4)=8B.=4a(a>0)C.=3+4=7D.2.若关于x的方程的解为负数,则m的取值范围是()A. B. C. D.3.在有理数中,分式有()A.1个 B.2个 C.3个 D.4个4.下列命题中,是假命题的是()A.在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形B.在△ABC中,若a2=(b+c)(b-c),则△ABC是直角三角形C.在△ABC中,若∠B=∠C=∠A,则△ABC是直角三角形D.在△ABC中,若a:b:c=5:4:3,则△ABC是直角三角形5.已知正比例函数y=kx,且y随x的增大而减少,则直线y=2x+k的图象是()A. B. C. D.6.如图所示,函数和的图象相交于(–1,1),(2,2)两点.当时,x的取值范围是()A.x<–1 B.x<–1或x>2 C.x>2 D.–1<x<27.某企业今年一月工业产值达20亿元,前三个月总产值达90亿元,求第二、三月份工业产值的月平均增长率.设月平均增长率为,则由题意可得方程()A. B.C. D.8.如图,□ABCD的对角线AC与BD相交于点O,AB⊥AC.若,,则BD的长为()A. B. C. D.9.□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF//CE D.∠BAE=∠DCF10.如图,取一张长为、宽为的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边应满足的条件是()A. B. C. D.11.已知正比例函数y=﹣2x的图象经过点(a,2),则a的值为()A. B.﹣1 C.﹣ D.﹣412.反比例函数y=(2m-1),当x>0时,y随x的增大而增大,则m的值是()A.m=±1 B.小于的实数 C.-1 D.1二、填空题(每题4分,共24分)13.为响应“双十二购物狂欢节”活动,某零食店推出了甲、乙、丙三类饼干礼包,已知甲、乙、丙三类礼包均由、、三种饼干搭配而成,每袋礼包的成本均为、、三种饼干成本之和.每袋甲类礼包有5包种饼干、2包种饼干、8包种饼干;每袋丙类礼包有7包种饼干、1包种饼干、4包种饼干.已知甲每袋成本是该袋中种饼干成本的3倍,利润率为,每袋乙的成本是其售价的,利润是每袋甲利润的;每袋丙礼包利润率为.若该网店12月12日当天销售甲、乙、丙三种礼包袋数之比为,则当天该网店销售总利润率为__________.14.如图.在平面直角坐标系中,函数(其中,)的图象经过的顶点.函数(其中)的图象经过顶点,轴,的面积为.则的值为____.15.如图所示是三个边长相等的正多边形拼成的无缝隙、不重叠的图形的一部分,正多边形①和②的内角都是108°,则正多边形③的边数是______.16.若直角三角形斜边上的中线等于3,则这个直角三角形的斜边长为17.在平面直角坐标系xOy中,直线与x,y轴分别交于点A,B,若将该直线向右平移5个单位,线段AB扫过区域的边界恰好为菱形,则k的值为_____.18.已知一组数据,,,,,,则这组数据的众数是________.三、解答题(共78分)19.(8分)如图,△ABC中AC=BC,点D,E在AB边上,连接CD,CE.(1)如图1,如果∠ACB=90°,把线段CD逆时针旋转90°,得到线段CF,连接BF,①求证:△ACD≌△BCF;②若∠DCE=45°,求证:DE2=AD2+BE2;(2)如图2,如果∠ACB=60°,∠DCE=30°,用等式表示AD,DE,BE三条线段的数量关系,说明理由.20.(8分)如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.21.(8分)甲、乙两车间同时从A地出发前往B地,沿着相同的路线匀速驶向B地,甲车中途由于某种原因休息了1小时,然后按原速继续前往B地,两车离A地的距离y(km)与行驶的时间x(h)之间的函数关系如图所示:(1)A、B两地的距离是__________km;(2)求甲车休息后离A地的距离y(km)与x(h)之间的函数关系;(3)请直接写出甲、乙两车何时相聚15km。22.(10分)某商场同时购进甲、乙两种商品共100件,其进价和售价如下表:商品名称甲乙进价(元/件)4090售价(元/件)60120设其中甲种商品购进x件,商场售完这100件商品的总利润为y元.(Ⅰ)写出y关于x的函数关系式;(Ⅱ)该商场计划最多投入8000元用于购买这两种商品,①至少要购进多少件甲商品?②若销售完这些商品,则商场可获得的最大利润是多少元?23.(10分)已知四边形ABCD,请你作出一个新图形,使新图形与四边形ABCD的相似比为2:1,用圆规、直尺作图,不写作法,但要保留作图痕迹.24.(10分)一手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部,B型手机y部.三款手机的进价和预售价如下表:手机型号

A型

B型

C型

进价(单位:元/部)

900

1200

1100

预售价(单位:元/部)

1200

1600

1300

(1)用含x,y的式子表示购进C型手机的部数;(2)求出y与x之间的函数关系式;(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.①求出预估利润P(元)与x(部)的函数关系式;(注:预估利润P=预售总额-购机款-各种费用)②求出预估利润的最大值,并写出此时购进三款手机各多少部.25.(12分)某校团委积极响应南充市“书香天府万卷南充”全民阅读活动,号召全校学生积极捐献图书共建“书香校园”.八(1)班40名同学都捐献了图书,全班40名同学共捐图书320册.班长统计了全班捐书情况如表:册数4567850人数68152(1)分别求出该班级捐献7册图书和8册图书的人数;(2)请算出捐书册数的平均数、中位数和众数,并判断其中哪些统计量不能反映该班同学捐书册数的一般状况,说明理由26.为了解高中学生每月用掉中性笔笔芯的情况,随机抽查了30名高中学生进行调查,并将调查的数据制成如下的表格:月平均用中性笔笔芯(根)456789被调查的学生数749523请根据以上信息,解答下列问题:(1)被调查的学生月平均用中性笔笔芯数大约________根;(2)被调查的学生月用中性笔笔芯数的中位数为________根,众数为________根;(3)根据样本数据,若被调查的高中共有1000名学生,试估计该校月平均用中性笔笔芯数9根的约多少人?

参考答案一、选择题(每题4分,共48分)1、D【解析】

根据二次根式的意义、性质逐一判断即可得.【详解】A.、没有意义,此选项错误;B.a(a>0),此选项错误;C.5,此选项错误;D.,此选项正确.故选D.【点睛】本题考查了二次根式的性质与化简,解题的关键是熟练掌握二次根式的定义和性质.2、B【解析】

先把m当作已知条件求出x的值,再根据x的值是负数列出关于m的不等式,求出m的取值范围即可.【详解】解:∵1x-m=1+x,∴x=,∵关于x的方程1x-m=1+x的解是负数,∴<0,解得m<-1.故选:B.【点睛】本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.3、A【解析】

判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】分母中不含字母,不是分式;分母中含字母,是分式;分母中不含字母,不是分式;分母中不含字母,不是分式;故选A.【点睛】本题考查了分式的概念,熟练掌握分式的判断依据是解题的关键.4、C【解析】

一个三角形中有一个直角,或三边满足勾股定理的逆定理则为直角三角形,否则则不是,据此依次分析各项即可.【详解】A.△ABC中,若∠B=∠C-∠A,则∠C=∠A+∠B,则△ABC是直角三角形,本选项正确;B.△ABC中,若a2=(b+c)(b-c),则a2=b2-c2,b2=a2+c2,则△ABC是直角三角形,本选项正确;C.△ABC中,若∠A∶∠B∶∠C=3∶4∶5,则∠,故本选项错误;D.△ABC中,若a∶b∶c=5∶4∶3,则△ABC是直角三角形,本选项正确;故选C.【点睛】本题考查的是直角三角形的判定,利用勾股定理的逆定理判断一个三角形是否是直角三角形的一般步骤:①确定三角形的最长边;②分别计算出最长边的平方与另两边的平方和;③比较最长边的平方与另两边的平方和是否相等.若相等,则此三角形是直角三角形;否则,就不是直角三角形.5、D【解析】

∵正比例函数且随的增大而减少,在直线中,∴函数图象经过一、三、四象限.故选D.6、B【解析】试题解析:当x≥0时,y1=x,又,∵两直线的交点为(1,1),∴当x<0时,y1=-x,又,∵两直线的交点为(-1,1),由图象可知:当y1>y1时x的取值范围为:x<-1或x>1.故选B.7、C【解析】

设月平均增长率的百分数为x,根据某企业今年一月工业产值达20亿元,第一季度总产值达1亿元,可列方程求解.【详解】设月平均增长率的百分数为x,

20+20(1+x)+20(1+x)2=1.

故选:C.【点睛】此题考查一元二次方程的应用,解题关键看到是一季度的和做为等量关系列出方程.8、B【解析】

根据勾股定理先求出BO的长,再根据平行四边形的性质即可求解.【详解】∵,∴AO=3,∵AB⊥AC,∴BO==5∴BD=2BO=10,故选B.【点睛】此题主要考查平行四边形的性质,解题的关键是熟知勾股定理的应用.9、B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AFCE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AECF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.10、B【解析】

由题图可知:得对折两次后得到的小长方形纸片的长为,宽为,然后根据相似多边形的定义,列出比例式即可求出结论.【详解】解:由题图可知:得对折两次后得到的小长方形纸片的长为,宽为,∵小长方形与原长方形相似,故选B.【点睛】此题考查的是相似三角形的性质,根据相似三角形的定义列比例式是解决此题的关键.11、B【解析】

把点(a,2)代入y=﹣2x得到关于a的一元一次方程,解之即可.【详解】解:把点(a,2)代入y=﹣2x得:2=﹣2a,解得:a=﹣1,故选:B.【点睛】本题考查了一次函数图象上点的坐标特征,正确掌握代入法是解题的关键.12、C【解析】

根据反比例函数的定义列出方程:m2−2=−1求解,再根据它的性质列出不等式:2m−1<0决定解的取舍.【详解】根据题意,m2−2=−1,解得m=±1,又∵2m−1≠0,∴m≠,∵y随x的增大而增大,2m−1<0,得m<,∴m=−1.故选C.【点睛】本题考查反比例函数的性质,反比例函数的定义.根据反比例函数自变量x的次数为-1.k>0时,在各自象限y随x的增大而减小;k<0时,在各自象限y随x的增大而增大.二、填空题(每题4分,共24分)13、25%【解析】

设每包A、B、C三种饼干的成本分别为x、y、z,从甲礼包入手,先求出5x=y+4z,再由甲的利润率求出甲礼包的售价为19.5x,成本15x;由乙礼包所提供的条件可求出乙礼包的售价为12x,成本为10x;由丙礼包的条件列出丙礼包的成本为7x+y+4z=12x,进而确定丙礼包的售价为15x,成本为12x;最后再由利润率的求法求出总利润率即可.【详解】解:设每包A、B、C三种饼干的成本分别为x、y、z,依题意得:5x+2y+8z=15x,∴5x=y+4z,由甲礼包的利润率为30%,则可求甲礼包的售价为19.5x,成本15x;∵每袋乙的成本是其售价的,利润是每袋甲利润,可知每袋乙礼包的利润是:4.5x×=2x,则乙礼包的售价为12x,成本为10x;由丙礼包的组成可知,丙礼包的成本为:7x+y+4z=12x,∵每袋丙礼包利润率为:25%,∴丙礼包的售价为15x,成本为12x;∵甲、乙、丙三种礼包袋数之比为4:6:5,∴,∴总利润率是25%,故答案为:25%.【点睛】本题考查三元一次方程组的应用;理解题意,能够通过已知条件逐步确定甲、乙、丙的售价与成本价是解题的关键.14、-1.【解析】

根据反比例函数K的几何意义即可得到结果【详解】解:依题意得:+=解得:K=,∵反比例函数图象在第2象限,∴k=-1.故答案为-1.【点睛】本题考查了反比例函数K的几何意义,正确掌握反比例函数K的几何意义是解题的关键.15、1.【解析】

先根据周角的定义求出正多边形③的每一个内角都是144°,由多边形的每一个内角都是144°先求得它的每一个外角是36°,然后根据正多边形的每个内角的度数×边数=360°求解即可.【详解】解:360°−18°−18°=144°,180°−144°=36°,360°÷36°=1.故答案为1.【点睛】本题主要考查的是多边形的内角与外角,明确正多边形的每个内角的度数×边数=360°是解题的关键.16、1.【解析】

根据直角三角形斜边中线的性质即可得.【详解】已知直角三角形斜边上的中线等于3,根据直角三角形斜边上的中线等于斜边的一半可得这个直角三角形的斜边长为1.故答案为:1.17、【解析】

根据菱形的性质知AB=2,由一次函数图象的性质和两点间的距离公式解答.【详解】令y=0,则x=-,即A(-,0).令x=0,则y=3,即B(0,3).∵将该直线向右平移2单位,线段AB扫过区域的边界恰好为菱形,∴AB=2,则AB2=1.∴(-)2+32=1.解得k=.故答案是:.【点睛】考查了菱形的性质和一次函数图象与几何变换,解题的关键是根据菱形的性质得到AB=2.18、45【解析】

根据众数的概念:一组数据中出现次数最多的数值即为众数,即可得到答案【详解】解:∵这组数据中45出现两次,出现次数最多∴众数是45故答案为45【点睛】本题考查众数的概念,熟练掌握众数的概念为解题关键三、解答题(共78分)19、(1)①详见解析;②详见解析;(2)DE2=EB2+AD2+EB·AD,证明详见解析【解析】

(1)①根据旋转的性质可得CF=CD,∠DCF=90°,再根据已知条件即可证明△ACD≌△BCF;②连接EF,根据①中全等三角形的性质可得∠EBF=90°,再证明△DCE≌△FCE得到EF=DE即可证明;(2)根据(1)中的思路作出辅助线,通过全等三角形的判定及性质得出相等的边,再由勾股定理得出AD,DE,BE之间的关系.【详解】解:(1)①证明:由旋转可得CF=CD,∠DCF=90°∵∠ACD=90°∴∠ACD=∠BCF又∵AC=BC∴△ACD≌△BCF②证明:连接EF,由①知△ACD≌△BCF∴∠CBF=∠CAD=∠CBA=45°,∠BCF=∠ACD,BF=AD∴∠EBF=90°∴EF2=BE2+BF2,∴EF2=BE2+AD2又∵∠ACB=∠DCF=90°,∠CDE=45°∴∠FCE=∠DCE=45°又∵CD=CF,CE=CE∴△DCE≌△FCE∴EF=DE∴DE2=AD2+BE2⑵DE2=EB2+AD2+EB·AD理由:如图2,将△ADC绕点C逆时针旋转60°,得到△CBF,过点F作FG⊥AB,交AB的延长线于点G,连接EF,∴∠CBE=∠CAD,∠BCF=∠ACD,BF=AD∵AC=BC,∠ACB=60°∴∠CAB=∠CBA=60°∴∠ABE=120°,∠EBF=60°,∠BFG=30°∴BG=BF,FG=BF∵∠ACB=60°,∠DCE=30°,∴∠ACD+∠BCE=30°,∴∠ECF=∠FCB+∠BCE=30°∵CD=CF,CE=CE∴△ECF≌△ECD∴EF=ED在Rt△EFG中,EF2=FG2+EG2又∵EG=EB+BG∴EG=EB+BF,∴EF2=(EB+BF)2+(BF)2∴DE2=(EB+AD)2+(AD)2∴DE2=EB2+AD2+EB·AD【点睛】本题考查了全等三角形的性质与旋转模型,解题的关键是找出全等三角形,转换线段,并通过勾股定理的计算得出线段之间的关系.20、见解析【解析】试题分析:(1)根据题意补全图形,如图所示;

(2)由旋转的性质得到为直角,由EF与CD平行,得到为直角,利用SAS得到与全等,利用全等三角形对应角相等即可得证.试题解析:(1)补全图形,如图所示;(2)由旋转的性质得:∴∠DCE+∠ECF=,∵∠ACB=,∴∠DCE+∠BCD=,∴∠ECF=∠BCD,∵EF∥DC,∴∠EFC+∠DCF=,∴∠EFC=,在△BDC和△EFC中,∴△BDC≌△EFC(SAS),∴∠BDC=∠EFC=.21、(1)180;(2);(3)甲乙两车出发0.5h或1.25h或1.75h或2.5h时两车距离15km【解析】

(1)根据图象解答即可;(2)根据函数图象中的数据可以求得甲车再次行驶过程中y与x之间的函数关系式;(3)根据题意,利用分类讨论的数学思想可以求得x的值.【详解】解:(1)观察图象可得:A、B两地的距离是180km;(2)由题意得,甲车的平均速度为:180÷(3-1)=90所以当x=1时,y=90当x=2时,y=90当2≤x≤3时,设(k≠0)点(2,90),(3,180)在直线上因此有解得:∴∴甲车休息后离A地的距离为y(km)与x(h)之间的函数关系为:(3)设乙车行驶过程中y与x之间的函数关系式是y=ax,

180=3a,得a=60,

∴乙车行驶过程中y与x之间的函数关系式是y=60x,∴60x=90,得x=1.5,即两车1.5小时相遇,当0≤x≤1.5时,甲车行驶过程中y与x之间的函数关系式是y=90x,90=x,

∴90x-60x=15,得x=,

90-60x=15时,x=1.25,当1.5≤x≤3时,甲车行驶过程中y与x之间的函数关系式是y=9x-90,

90=x,

∴60x-90=1.5,得x=1.75;60x-(90x-90)=15,得x=2.5由上可得,甲乙两车出发0.5h或1.25h或1.75h或2.5h时两车距离15km。【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.22、(Ⅰ);(Ⅱ)①至少要购进20件甲商品;②售完这些商品,则商场可获得的最大利润是2800元.【解析】

(Ⅰ)根据总利润=(甲的售价-甲的进价)×甲的进货数量+(乙的售价-乙的进价)×乙的进货数量列关系式并化简即可得答案;(Ⅱ)①根据总成本最多投入8000元列不等式即可求出x的范围,即可得答案;②根据一次函数的增减性确定其最大值即可.【详解】(Ⅰ)根据题意得:则y与x的函数关系式为.(Ⅱ),解得.∴至少要购进20件甲商品.,∵,∴y随着x的增大而减小∴当时,有最大值,.∴若售完这些商品,则商场可获得的最大利润是2800元.【点睛】本题考查一次函数的实际应用及一元一次不等式的应用,熟练掌握一次函数的性质是解题关键.23、见解析.【解析】

根据新图形与四边形ABCD的相似比为2:1,连接BD,延长BA、BD与BC在延长线上截取BA=AE,BD=DF,BC=CG,即可得出所画图形.【详解】解:如图所示.连接BD,延长BA、BD与BC在延长线上截取BA=AE,BD=DF,BC=CG,连接EF,FG,四边形BEFG即所画图形.【点睛】本题考查相似变换的性质,根据相似比得出BE、BF、BG与BA、BD、BC的关系是解决问题的关键.24、(1)60-x-y(2)y=2x-1(3)①P=10x+10②最大值为1710元.此时购进A型手机3部,B型手机18部,C型手机8部【解析】

(1)手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,设购进A型手机x部,B型手机y部,那么购进C型手机的部数=60-x-y;(2)由题意,得900x+1200y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论