




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省苏州工业园区第十中学2024年八年级下册数学期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.要使代数式有意义,则的取值范围是A. B. C. D.2.若不等式组,只有三个正整数解,则a的取值范围为()A. B. C. D.3.如图,在中,平分交AC于点.若,则的长是()A. B. C. D.4.点A(1,-2)在正比例函数的图象上,则k的值是().A.1 B.-2 C. D.5.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公共汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中①小明家与学校的距离1200米;②小华乘坐公共汽车的速度是240米/分;③小华乘坐公共汽车后7:50与小明相遇;④小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,他们可以同时到达学校.其中正确的个数是()A.1个 B.2个C.3个 D.4个6.下面的图形中,既是中心对称又是轴对称的图形是()A. B. C. D.7.如图是甲、乙两个探测气球所在位置的海拔高度(单位:)关于上升时间(单位:)的函数图像.有下列结论:①当时,两个探测气球位于同一高度②当时,乙气球位置高;③当时,甲气球位置高;其中,正确结论的个数是()A.个 B.个 C.个 D.个8.已知点和点在反比例函数的图象上,若,则()A. B.C. D.9.学校把学生学科的期中、期末两次成绩分别按40%,60%的比例计入学期学科总成绩.小明期中数学成绩是85分,期末数学总成绩是90分,那么他的学期数学成绩()A.85分B.1.5分C.88分D.90分10.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB,若BE=4,则AE的长为()A.1 B.1.5 C.2 D.2.5二、填空题(每小题3分,共24分)11.若一次函数的函数值随的增大而增大,则的取值范围是_____.12.如图,点A,B分别在x轴、y轴上,点O关于AB的对称点C在第一象限,将△ABC沿x轴正方向平移k个单位得到△DEF(点B与E是对应点),点F落在双曲线y=kx上,连结BE交该双曲线于点G.∠BAO=60°,OA=2GE,则k的值为________13.如图,平行四边形ABCD中,AE⊥CD于E,∠B=50°,则∠DAE=______.14.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是_____.15.解方程:(1)2x2﹣5x+1=0(用配方法);(2)5(x﹣2)2=2(2﹣x).16.如图是一种贝壳的俯视图,点C分线段AB近似于黄金分割(AC>BC).已知AB=10cm,则AC的长约为__________cm.(结果精确到0.1cm)17.定义:等腰三角形的顶角与其一个底角的度数的比值称为这个等腰三角形的“特征值”.若等腰中,,则它的特征值__________.18.实验中学规定学生学期的数学成绩满分为120分,其中平时成绩占20%,期中考试成绩占30%,期末考试成绩占50%,王玲的三项成绩依次是100分,90分,106分,那么王玲这学期的数学成绩为_____分.三、解答题(共66分)19.(10分)先化简,再求值:先化简÷(﹣x+1),然后从﹣2<x<的范围内选取一个合适的整数作为x的值代入求值.20.(6分)在梯形中,,点在直线上,联结,过点作的垂线,交直线与点,(1)如图1,已知,:求证:;(2)已知:,①当点在线段上,求证:;②当点在射线上,①中的结论是否成立?如果成立,请写出证明过程;如果不成立,简述理由.21.(6分)(1)计算:(2)已知:x=+1,求x2﹣2x的值.22.(8分)先化简,再求值:(+)÷,其中x=﹣1.23.(8分)如图1,直线与轴交于点,与轴交于点,.(1)求两点的坐标;(2)如图2,以为边,在第一象限内画出正方形,并求直线的解析式.24.(8分)按指定的方法解下列一元二次方程:(1)(配方法)(2)(公式法)25.(10分)世界上大部分国家都使用摄氏温度(℃),但美国,英国等国家的天气预报都使用华氏温度(℉),两种计量之间有如下对应:摄氏温度(℃)…010…华氏温度(℉)…3250…已知华氏温度y(℉)是摄氏温度x(℃)的一次函数.求该一次函数的解析式;当华氏温度14℉时,求其所对应的摄氏温度.26.(10分)已知,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,且AE=CF,连接AC,EF.(1)如图①,求证:EF//AC;(2)如图②,EF与边CD交于点G,连接BG,BE,①求证:△BAE≌△BCG;②若BE=EG=4,求△BAE的面积.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
根据二次根式的被开方数非负得到关于x的不等式,解不等式即得答案.【详解】解:根据题意,得,解得,.故选C.【点睛】本题考查了二次根式有意义的条件,熟知二次根式被开方数非负是解题的关键.2、A【解析】解不等式组得:a<x≤3,因为只有三个整数解,∴0≤a<1;故选A.3、A【解析】
根据两角对应相等,判定两个三角形相似.再用相似三角形对应边的比相等进行计算求出BD的长.【详解】∵∠A=∠DBC=36°,∠C公共,∴△ABC∽△BDC,且AD=BD=BC.设BD=x,则BC=x,CD=2-x.由于,∴.整理得:x2+2x-4=0,解方程得:x=-1±,∵x为正数,∴x=-1+,即AD=故选A.【点睛】本题考查的是相似三角形的判定与性质,先用两角对应相等判定两个三角形相似,再用相似三角形的性质对应边的比相等进行计算求出BD的长.4、B【解析】
直接把点(1,-2)代入正比例函数y=kx(k≠0),求出k的值即可.【详解】∵正比例函数y=kx(k≠0)的图象经过点(1,-2),∴-2=k.故选B.【点睛】本题考查了一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5、D【解析】
根据函数图象中各拐点的实际意义求解可得.【详解】①.根据图形可知小明家与学校的距离1200米,此选项正确;②.小华到学校的平均速度是1200÷(13−8)=240(米/分),此选项正确;③.(480÷240)+8=10分,所以小华乘坐公共汽车后7:50与小明相遇,此选项正确;④.小华跑步的平均速度是1200÷(20−8)=100(米/分)他们可以同时到达学校,此选项正确;故选:D.【点睛】此题考查函数图象,看懂图中数据是解题关键根据.6、D【解析】
根据轴对称图形与中心对称图形的概念进行判断即可.【详解】A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、既是轴对称图形,也是中心对称图形.故正确.故选D.【点睛】本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.7、D【解析】
根据图象进行解答即可.【详解】解:①当x=10时,两个探测气球位于同一高度,正确;
②当x>10时,乙气球位置高,正确;
③当0≤x<10时,甲气球位置高,正确;
故选:D.【点睛】本题考查了一次函数的应用、解题的关键是根据图象进行解答.8、D【解析】
根据反比例函数的图像与性质逐项分析即可.【详解】∵k<0,∴反比例函数的图像在二、四象限.A.当点在第二象限,点在第四象限,且时,x1+x2>0,y1+y2>0,此时,故A错误;B.当点和点在第四象限时,x1+x2>0,y1+y2<0,此时,故B错误;C.当点和点在第四象限时,x1·x2>0,x1-x2<0,y1-y2<0,此时,故C错误;D.∵A、B、C均错误,∴D正确.故选D.【点睛】本题考查了反比例函数的图像与性质,反比例函数(k是常数,k≠0)的图像是双曲线,当k>0,反比例函数图象的两个分支在第一、三象限,在每一象限内,y随x的增大而减小;当k<0,反比例函数图象的两个分支在第二、四象限,在每一象限内,y随x的增大而增大.9、C【解析】
根据学期数学成绩=期中数学成绩×所占的百分比+期末数学成绩×所占的百分比即可求得学期总成绩.【详解】小明这学期总评成绩=85×40%+90×60%=2.故选:C.【点睛】本题考查的是加权平均数的求法.解题的关键是根据期中、期末两次成绩所占的比例,列出算式,是一道基础题.10、C【解析】
根据线段的垂直平分线的性质得到EC=EB=4,根据直角三角形的性质计算即可.【详解】∵DE是BC的垂直平分线,∴EC=EB=4,∴∠ECB=∠B=30°,∵CE平分∠ACB,∴∠ECB=∠ACE=30°,∴∠A=90°,又∠ACE=30°,∴AE=EC=2,故选C.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.二、填空题(每小题3分,共24分)11、k>2【解析】
试题分析:本题主要考查一次函数的性质,掌握一次函数的性质是解题的关键,即在y=kx+b中,当k>0时y随x的增大而增大,当k<0时y随x的增大而减小.【详解】根据题意可得:k-2>0,解得:k>2.【点睛】考点:一次函数的性质;一次函数的定义12、25【解析】
设OA等于2m,由对称图形的特点,和勾股定理等把C点和B点坐标用含m的代数式来表示,F、E、G是由△ABC平移K个单位得到,坐标可以用含m和k的代数式表示,因为G、F在双曲线上,所以其横纵坐标的乘积都为k,据此列两个关系式,先求出m的值,从而可求k的值.【详解】如图:作CH垂直于x轴,CK垂直于y轴,由对称图形的特点知,CA=OA,设OA=2m,∵∠BAO=60°,∴OB=23m,AC=2m,∠CAH=180°-60°-60°=60∴AH=m,CH=3m∴C点坐标为(3m,3m则F点坐标为(3m+k,3mF点在双曲线上,则(3m+k)×3m=kB点坐标为(0,23m则E点坐标为(k,23mG点坐标为(k-m,23m则(k-m)×23m=k,∴(3m+k)×3m=(k-m)×23m,整理得k=5m,代入(k-m)23m=k中,得4m×23m=5m,即m=0(舍去),m=53则k=5m=25故答案为:253【点睛】本题考查了平面直角坐标系中反比例函数与三角形的综合,灵活运用反比例函数的解析式与点的坐标间的关系是解题的关键.13、40°.【解析】
根据平行四边形的对角相等求∠D,由AE⊥CD,利用直角三角形两锐角互余求∠DAE.【详解】解:∵四边形ABCD为平行四边形,
∴∠D=∠B=50°,
又∵AE⊥CD,
∴∠DAE=90°-∠D=40°.
故答案为:40°.【点睛】本题考查平行四边形的性质,注意掌握平行四边形的两组对角分别相等,直角三角形的两锐角互余.14、x=1【解析】【分析】一次函数y=ax+b的图象与x轴交点横坐标的值即为方程ax+b=0的解.【详解】∵一次函数y=ax+b的图象与x轴相交于点(1,0),∴关于x的方程ax+b=0的解是x=1,故答案为:x=1.【点睛】本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.15、(1)x1=,x2=;(2)x1=2,x2=【解析】
(1)移项,系数化成1,配方,开方,即可得出两个一元一次方程,求出方程的解;(2)移项后分解因式,即可可得出两个一元一次方程,求出方程的解即可.【详解】解:(1),(2),,【点睛】本题考查了利用配方法、因式分解法解一元二次方程,正确计算是解题的关键.16、6.2【解析】
根据黄金分割的计算公式正确计算即可.【详解】∵点C分线段AB近似于黄金分割点(AC>BC),∴AC=,∵AB=10cm,∴AC=,故答案为:6.2.【点睛】此题考查黄金分割点的计算公式,正确掌握公式是解题的关键.17、【解析】
可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解【详解】解:①当为顶角时,等腰三角形两底角的度数为:∴特征值②当为底角时,顶角的度数为:∴特征值综上所述,特征值为或故答案为或【点睛】本题主要考查等腰三角形的性质,熟记等腰三角形的性质是解题的关键,要注意到本题中,已知的底数,要进行判断是底角或顶角,以免造成答案的遗漏.18、100【解析】
利用加权平均数的公式直接计算.用91分,90分,81分别乘以它们的百分比,再求和即可.【详解】小惠这学期的体育成绩=91×20%+90×30%+81×10%=88.1(分).故答案为88.1.【点睛】此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键,是一道常考题.三、解答题(共66分)19、﹣,﹣.【解析】
根据分式的减法和除法可以化简题目中的式子,然后在-2<x<中选取一个使得原分式有意义的整数值代入化简后的式子即可求出最后答案,值得注意的是,本题答案不唯一,x的值可以取-2、2中的任意一个.【详解】原式====,∵-2<x<(x为整数)且分式要有意义,所以x+1≠0,x-1≠0,x≠0,即x≠-1,1,0,因此可以选取x=2时,此时原式=-.【点睛】本题主要考查了求代数式的值,解本题的要点在于在化解过程中,求得x的取值范围,从而再选取x=2得到答案.20、(1)证明见解析;(2)①证明见解析;②结论仍然成立,证明见解析.【解析】
(1)过F作FM⊥AD,交AD的延长线于点M,通过AAS证明△ABE≌△EMF,根据全等三角形的性质即可得出AB=AD;(2)①在AB上截取AG=AE,连接EG.通过ASA证明△BGE≌△EDF,根据全等三角形的性质即可得出BE=EF;②【详解】(1)如图:过F作FM⊥AD,交AD的延长线于点M,∴∠M=90°,∵∠BEF=90°,∴∠AEB+MEF=90°,∵∠A=90°,∴∠ABE+∠AEB=90°,∴∠MEF=∠ABE,在△ABE和△EMF中,,∴△ABE≌△EMF(AAS)∴AB=ME,AE=MF,∵AM∥BC,∠C=45°,∴∠MDF=∠C=45°,∴∠DFM=45°,∴DM=FM,∴DM=AE,∴DM+ED=AE+ED,即AD=EM,∴AB=AD;(2)①证明:如图,在AB上截取AG=AE,连接EG,则∠AGE=∠AEG,∵∠A=90°,∠A+∠AGE+∠AEG=180°,∴∠AGE=45°,∴∠BGE=135°,∵AD∥BC,∴∠C+∠D=180°,又∵∠C=45°,∴∠D=135°,∴∠BGE=∠D,∵AB=AD,AG=AE,∴BG=DE,∵EF⊥BE,∴∠BEF=90°,又∵∠A+∠ABE+∠AEB=180°,∠AEB+∠BEF+∠DEF=180°,∠A=90°,∴∠ABE=∠DEF,在△BGE与△EDF中,,∴△BGE≌△EDF(ASA),∴BE=EF;②结论仍然成立,证明如下,如图:延长BA到点G,使BG=ED,连接EG,则△EAG是等腰直角三角形,∴∠EGB=45°,∵ED∥BC,∠C=45°,∴∠FDE=45°,∴∠FDE=45°,∴∠EGB=∠FDE,∵∠A=90°,∴∠AEB+∠ABE=90°,∵EF⊥EB,∴∠FED+∠AEB=90°,∴∠AEB=∠FED,在△BGE与△EFD中,,∴△BGE≌△EDF(ASA),∴BE=EF.【点睛】本题是四边形综合题,考查了等腰直角三角形的性质,梯形的性质,全等三角形的判定和性质,综合性较强,有一定的难度.添加适当的辅助线构造全等三角形是解题的关键.21、(1);(2)1.【解析】
(1)根据二次根式的乘除法和加减法可以解答本题;
(2)根据x的值和平方差公式可以解答本题.【详解】(1)===2;(2)∵x=+1,∴x2﹣2x=x(x﹣2)===5﹣1=1.【点睛】本题考查二次根式的化简求值,解答本题的关键是明确二次根式化简求值的方法.22、-5.【解析】
括号内先通分进行分式加减法运算,然后再进行分式除法运算,化简后把x的值代入计算即可得.【详解】(+)÷===,当x=-1时,原式=-2-3=-5.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.23、(1);(2)直线的解析式为.【解析】
(1)由题意A(0,-2k),B(2,0),再根据,构建方程即可解决问题;(2)如图2中,作CH⊥x轴于H.利用全等三角形的性质求出点C坐标,再利用待定系数法求出直线CD的解析式即可【详解】(1)∵直线与轴交于点,与轴交于点,∴,∵,∴,∴,∵,∴,∴;(2)如图,作轴于点,∵四边形是正方形,∴,∴,∴,∴,∴,∴,∵,∴设直线的解析式为,把代入,得,∴直线的解析式为.【点睛】本题考查了一次函数的应用、正方形的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.24、(1),;(2),【解析】
(1)先把二次项系数化为1,方程两边加上一次项系数一半的平方,把左边变成完全平方式,然后用直接开平方法解即可;(2)首先确定a,b,c的值,再计算出b2-4ac的值判断方程方程是否有解,若有解,代入公式即可求解.【详解】(1)∴解得,,;(2)在这里,,b=-2,∴解得,,【点睛】本题考查了解一元二次方程的方法,求根公式法适用于任何一元二次方程,方程的解为:25、(1)y=1.8x+1;(2)华氏温度14℉所对应的摄氏温度是-2℃.【解析】分析:(1)设y=kx+b(k≠0),利用图中的两对数,用待定系数法求解即可;
(2)把y=14
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 临时保安合同范本
- 人才引进聘用合同范本
- 2025年西藏货运从业资格证考试模拟考试题目答案
- 专业购销合同范本
- 个人雇佣老师合同范本
- 加工木料供货合同范本
- 办公区花卉租赁合同范本
- 冰淇淋原材料采购合同范本
- 仪器外借合同范本
- 公交驾校培训合同范本
- 荔枝依旧年年红
- SMT贴片线项目可行性研究报告
- Unit+6+Lesson+3+The+Superhero+Behind+Superman+课件高中英语北师大版(2019)必修第二册+
- 新加坡公司法-英文版
- 第五版-FMEA-新版FMEA【第五版】
- 口腔修复学第三章牙体缺损的修复
- 建设部环卫劳动定额
- 2023年枣庄科技职业学院单招综合素质模拟试题及答案解析
- 美容心理学概述(美容心理学课件)
- 化工企业安全生产教育培训计划及内容
- GB/T 30891-2014水产品抽样规范
评论
0/150
提交评论