版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年安徽省合肥中学科大附中数学八年级下册期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,矩形ABCD中,点E,F分别是AB、CD的中点,连接DE和BF,分别取DE、BF的中点M、N,连接AM,CN,MN,若,,则图中阴影部分的面积为()A.4 B.6 C.12 D.242.某个函数自变量的取值范围是x≥-1,则这个函数的表达式为()A.y=x+1 B.y=x2+1 C.y= D.y=3.如图,E、F、G、H分别是四边形ABCD四条边的中点,要使四边形EFGH为矩形,四边形ABCD应具备的条件是()A.对角线互相垂直 B.对角线相等 C.一组对边平行而另一组对边不平行 D.对角线互相平分4.如图,在矩形ABCD中,已知,,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,则EF的长为A.2 B.3 C.4 D.55.以下命题,正确的是().A.对角线相等的菱形是正方形B.对角线相等的平行四边形是正方形C.对角线互相垂直的平行四边形是正方形D.对角线互相垂直平分的四边形是正方形6.已知y=m+3xm2-8是正比例函数,则A.8 B.4 C.±3 D.37.最早记载勾股定理的我国古代数学名著是()A.《九章算术》 B.《周髀算经》 C.《孙子算经》 D.《海岛算经》8.如图,在长为31m,宽为10m的矩形空地上修建同样宽的道路(图中阴影部分),剩余的空地上种植草坪,使草坪的面积为540m1.设道路的宽为xm,根据题意,下面列出的方程正确的是()A.31x+10x﹣1x1=540B.31x+10x=31×10﹣540C.(31﹣x)(10﹣x)=540D.(31﹣x)(10﹣x)=31×10﹣5409.下列式子一定成立的是()A. B. C. D.10.某单位向一所希望小学赠送1080件文具,现用A、B两种不同的包装箱进行包装,已知每个B型包装箱比A型包装箱多装15件文具,单独使用B型包装箱比单独使用A型包装箱可少用12个.设B型包装箱每个可以装x件文具,根据题意列方程为A. B.C. D.二、填空题(每小题3分,共24分)11.如图,正方形中,点在边上,,把线段绕点旋转,使点落在直线上的点,则两点间的距离为___________.12.如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有1+4=5个正方形;第三幅图中有1+4+9=14个正方形;…按这样的规律下去,第5幅图中有______个正方形.13.如图所示,△ABC中,AB=10cm,AC=8cm,∠ABC和∠ACB的角平分线交于点O,过点O作BC的平行线MN交AB于点M,交AC于点N,则△AMN的周长为____.14.若关于的一元二次方程的常数项为,则的值是__________.15.如果将直线y=3x-1平移,使其经过点(0,2),那么平移后所得直线的表达式是______.16.在平面直角坐标系xOy中,直线与x,y轴分别交于点A,B,若将该直线向右平移5个单位,线段AB扫过区域的边界恰好为菱形,则k的值为_____.17.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为______度.18.比较大小:__________-1.(填“”、“”或“”)三、解答题(共66分)19.(10分)计算:2b﹣(4a+)(a>0,b>0).20.(6分)如图,点P是正方形ABCD内一点,连接CP,将线段CP绕点C顺时针旋转90°,得线段CQ,连接BP,DQ.(1)求证:△BCP≌△DCQ;(2)延长BP交直线DQ于点E.①如图2,求证:BE⊥DQ;②若△BCP是等边三角形,请画出图形,判断△DEP的形状,并说明理由.21.(6分)化简求值:,从的值:0,1,2中选一个代入求值.22.(8分)如图,□ABCD的对角线AC、BD相交于点O,AC平分∠BAD,DP//AC,CP//BD.(1)求证:四边形ABCD是菱形;(2)若AC=4,BD=6,求OP的长.23.(8分)已知:一次函数的图像经过点A(-1,2)和点B(0,4).(1)求这个一次函数的表达式;(2)请你画出平面直角坐标系,并作出本题中的一次函数的图像.24.(8分)如图1在正方形ABCD中,O是AD的中点,点P从A点出发沿A→B→C→D的路线移动到点D时停止,出发时以a单位/秒匀速运动:同时点Q从D出发沿D→C→B→A的路线匀速运动,移动到点A时停止,出发时以b单位/秒运动,两点相遇后点P运动速度变为c单位/秒运动,点Q运动速度变为d单位/秒运动:图2是射线OP随P点运动在正方形ABCD中扫过的图形的面积y1与时间t的函数图象,图3是射线OQ随Q点运动在正方形ABCD中扫过的图形的面积y2与时间(1)正方形ABCD的边长是______.(2)求P,Q相遇后∠POQ在正方形中所夹图形面积S与时间t的函数关系式.25.(10分)为调查某校初二学生一天零花钱的情况,随机调查了初二级部分学生的零钱金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为_____,图①中的值是_____;(2)求本次调查获取的样本数据的平均数;(3)根据样本数据,估计该年级300名学生每天零花钱不多于10元的学生人数.26.(10分)如图,在中,BE∥DF,且分别交对角线AC于点E,F,连接ED,BF.(1)求证:AE=CF(2)若AB=9,AC=16,AE=4,BF=,求四边形ABCD的面积.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
由题意可知,,,所以阴影部分的面积就等于矩形面积的一半.【详解】解:由题意可知,,故答案为:C【点睛】本题考查了与矩形有关的面积问题,确定所求面积与矩形面积的数量关系是解题的关键.2、C【解析】
根据被开方数大于等于0,分母不等于0分别求出各选项的函数的取值范围,从而得解.【详解】解:A、自变量的取值范围是全体实数,故本选项错误;B、自变量的取值范围是全体实数,故本选项错误;C、由x+1≥0得,x≥-1,故本选项正确;D、由x+10得,x-1,故本选项错误.故选:C.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3、A【解析】分析:根据三角形的中位线定理得到四边形EFGH一定是平行四边形,再推出一个角是直角,由矩形的判定定理可求解.详解:连接AC、BD,两线交于O,
根据三角形的中位线定理得:EF∥AC,EF=AC,GH∥AC,GH=AC,
∴EF∥GH,EF=GH,
∴四边形EFGH一定是平行四边形,
∴EF∥AC,EH∥BD,
∵BD⊥AC,
∴EH⊥EF,
∴∠HEF=90°,
故选:A.点睛:能够根据三角形的中位线定理证明:顺次连接四边形各边中点所得四边形是平行四边形;顺次连接对角线互相垂直的四边形各边中点所得四边形是矩形;顺次连接对角线相等的四边形各边中点所得四边形是菱形.掌握这些结论,以便于运用.4、B【解析】
求出AC的长度;证明设为,得到;列出关于的方程,求出即可解决问题.【详解】解:四边形ABCD为矩形,,;由勾股定理得:,;由题意得:,;设为,,;由勾股定理得:,解得:,.故选:B.【点睛】该题主要考查了翻折变换的性质、勾股定理等几何知识点及其应用问题;解题的关键是灵活运用翻折变换的性质、勾股定理等几何知识点来分析、判断、推理或解答5、A【解析】
利用正方形的判定方法分别判断后即可确定正确的选项.【详解】A、对角线相等的菱形是正方形,正确,是真命题;
B、对角线相等的平行四边形是矩形,故错误,是假命题;
C、对角线互相垂直的平行四边形是菱形,故错误,是假命题;
D、对角线互相垂直平分的四边形是菱形,故错误,是假命题,
故选:A.【点睛】考查了命题与定理的知识,解题的关键是了解正方形的判定方法.6、D【解析】
直接利用正比例函数的定义分析得出即可.【详解】∵y=(m+2)xm2﹣8是正比例函数,∴m2﹣8=2且m+2≠0,解得m=2.故选:D.【点睛】考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为2.7、B【解析】
由于《周髀算经》是我国最古老的一部天文学著作,不但记载了勾股定理,还详细的记载了有关“勾股定理”公式以及证明方法,所以是最早有记载的.【详解】最早记载勾股定理的我国古代数学名著是《周髀算经》,故选:B.【点睛】考查了数学核心素养的知识,了解最早记载勾股定理的我国古代数学名著是解题的依据.8、C【解析】
把道路进行平移,可得草坪面积=长为31﹣x,宽为10﹣x的面积,把相关数值代入即可求解.【详解】解:把道路进行平移,可得草坪面积为一个矩形,长为31﹣x,宽为10﹣x,∴可列方程为:(31﹣x)(10﹣x)=2.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,是正确列出一元二次方程的关键.9、D【解析】
根据平方根、二次根式的加法及二次根式有意义的条件即可得到答案.【详解】A.因为不知道a是否为正数,所以不能得到;B.因为不知道a,b是否同为正数或负数,所以不能得到;C.因为,所以错误;D.因为,所以正确.故选择D.【点睛】本题考查平方根、二次根式的加法及二次根式有意义的条件,解题的关键是掌握平方根、二次根式的加法及二次根式有意义的条件.10、A【解析】
关键描述语:单独使用B型包装箱比单独使用A型包装箱可少用12个;可列等量关系为:所用B型包装箱的数量=所用A型包装箱的数量-12,由此可得到所求的方程.【详解】解:根据题意,得:故选:A.【点睛】此题考查分式方程的问题,关键是根据公式:包装箱的个数与文具的总个数÷每个包装箱装的文具个数是等量关系解答.二、填空题(每小题3分,共24分)11、或【解析】
分两种情况:点F线段BC上时或在CB的延长线上时,根据正方形的性质及旋转的性质证明△ABF≌△ADE得到BF=DE,即可求出答案.【详解】∵四边形ABCD是正方形,∴∠A=∠B=90°,AB=AD=BC=CD=DE+CE=2+1=3,由旋转得AF=AE,∴△ABF≌△ADE,∴BF=DE=2,如图:当点F线段BC上时,CF=BC-BF=3-2=1,当点F在CB延长线上时,CF=BC+BF=3+2=5,故答案为:1或5.【点睛】此题考查正方形的性质,全等三角形的判定及性质,旋转的性质,正确理解题意分情况解题是关键.12、55【解析】
观察图形,找到正方形的个数与序数之间的关系,从而得出第5幅图中正方形的个数.【详解】解:∵第1幅图中有1个正方形,
第2幅图中有1+4=5个正方形,
第3幅图中有1+4+9=14个正方形,∴第4幅图中有12+22+32+42=30个正方形,第5幅图中有12+22+32+42+52=55个正方形.故答案为:55.【点睛】本题考查查图形的变化规律,能根据图形之间的变化规律,得出正方形个数与序数之间的规律是解决此题的关键.13、18【解析】
根据角平分线的定义、平行线的性质,及等角对等边可知OM=BM,ON=CN,则△AMN的周长=AB+AC可求.【详解】∵∠ABC和∠ACB的角平分线交于点O,∴∠ABO=∠CBO,∠ACO=∠BCO,∵BC∥MN,∴∠BOM=∠CBO,∠CON=∠BCO,∴∠BOM=∠ABO,∠CON=∠ACO,∴OM=BM,ON=CN,∴△AMN的周长=AM+AN+MN=AM+OM+AN+NC=AB+AC=18cm.故答案为:18.【点睛】此题考查角平分线的定义,平行线分线段成比例,解题关键在于得出OM=BM,ON=CN.14、【解析】
先找到一元二次方程的常数项,得到关于m的方程,解出方程之后检验最后得到答案即可【详解】关于的一元二次方程的常数项为,故有,解得m=4或m=-1,又因为原方程是关于x的一元二次方程,故m+1≠0,m≠1综上,m=4,故填4【点睛】本题考查一元二次方程的概念,解出m之后要重点注意二次项系数不能为0,舍去一个m的值15、【解析】
根据平移不改变k的值可设平移后直线的解析式为y=3x+b,然后将点(0,1)代入即可得出直线的函数解析式.【详解】解:设平移后直线的解析式为y=3x+b.
把(0,1)代入直线解析式得1=b,
解得
b=1.
所以平移后直线的解析式为y=3x+1.
故答案为:y=3x+1.【点睛】本题考查一次函数图象与几何变换,待定系数法求一次函数的解析式,掌握直线y=kx+b(k≠0)平移时k的值不变是解题的关键.16、【解析】
根据菱形的性质知AB=2,由一次函数图象的性质和两点间的距离公式解答.【详解】令y=0,则x=-,即A(-,0).令x=0,则y=3,即B(0,3).∵将该直线向右平移2单位,线段AB扫过区域的边界恰好为菱形,∴AB=2,则AB2=1.∴(-)2+32=1.解得k=.故答案是:.【点睛】考查了菱形的性质和一次函数图象与几何变换,解题的关键是根据菱形的性质得到AB=2.17、1【解析】
根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.【详解】解:∵△ABC中,AB=AC,∴∠B=∠C,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,∴∠A:∠B=1:2,即5∠A=180°,∴∠A=1°,故答案为1.【点睛】本题考查了三角形内角和定理与等腰三角形的性质,解题的关键是能根据等腰三角形性质、三角形内角和定理与已知条件得出5∠A=180°.18、【解析】
先由,得到>,再利用两个负实数绝对值大的反而小得到结论.【详解】解:∵>,∴,∴>.故答案为:【点睛】本题考查了实数大小的比较,关键要熟记实数大小的比较方法:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.三、解答题(共66分)19、﹣5.【解析】分析:按照二次根式的相关运算法则进行化简计算即可.详解:原式=2b×﹣4a×﹣3=2﹣4﹣3=﹣5.点睛:熟记“二次根式的相关运算性质、法则”是正确解答本题的关键.20、(1)证明见解析;(2)①证明见解析;②作图见解析;△DEP为等腰直角三角形,理由见解析.【解析】
(1)根据旋转的性质证明∠BCP=∠DCQ,得到△BCP≌△DCQ;(2)①根据全等的性质和对顶角相等即可得到答案;②根据等边三角形的性质和旋转的性质求出∠EPD=45°,∠EDP=45°,判断△DEP的形状.【详解】(1)证明:∵∠BCD=90°,∠PCQ=90°,∴∠BCP=∠DCQ,在△BCP和△DCQ中,,∴△BCP≌△DCQ;(2)①如图b,∵△BCP≌△DCQ,∴∠CBF=∠EDF,又∠BFC=∠DFE,∴∠DEF=∠BCF=90°,∴BE⊥DQ;②画图如下,∵△BCP为等边三角形,∴∠BCP=60°,∴∠PCD=30°,又CP=CD,∴∠CPD=∠CDP=75°,又∠BPC=60°,∠CDQ=60°,∴∠EPD=45°,∠EDP=45°,∴△DEP为等腰直角三角形.【点睛】本题考查的是正方形的性质、三角形全等的判定和性质以及旋转的性质,掌握正方形的四条边相等、四个角都是直角,旋转的性质是解题的关键.21、2.【解析】
原式括号中两项通分并利用除法法则计算,约分得到最简结果,把x=2代入计算即可求出值,注意x=0或x=1分母没有意义.【详解】,取代入得:原式.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22、(1)见解析;(2)【解析】
(1)首先通过角平分线的定义和平行四边形的性质,平行线的性质得出,则有,再利用一组邻边相等的平行四边形是菱形即可证明;(2)首先根据题意和菱形的性质证明四边形OCPD是矩形,然后利用矩形的性质和勾股定理即可得出答案.【详解】(1)∵AC平分∠BAD,.∵四边形ABCD是平行四边形,,,,,∴平行四边形ABCD是菱形;(2)∵平行四边形ABCD是菱形,∴,.∵DPAC,CPBD,∴四边形OCPD是平行四边形.,∴四边形OCPD是矩形,∴.【点睛】本题主要考查四边形,掌握矩形,菱形的判定及性质和勾股定理是解题的关键.23、(1);(2)见解析【解析】
(1)设一次函数解析式为,将A,B坐标代入求出k,b的值,即可得解析式;(2)建立坐标系,找到A,B两点的位置,再连线即可.【详解】(1)设一次函数解析式为,将A(-1,2)和点B(0,4)代入得:解得,∴一次函数解析式为(2)如图所示,【点睛】本题考查求一次函数解析式与作图,熟练掌握待定系数法求函数解析式是解题的关键.24、(1)6;(2)见详解.【解析】
(1)从图3中可以看出射线OQ前面6秒扫过的面积为9,则可以得到12×12AD∙AD=9(2)仔细观察函数图象可知点P点Q是在点C处相遇,并由(1)中得到的正方形边长可求得,相遇前后P,Q的速度,再画出图形列出式子求解即可.【详解】解:(1)由图3可知△OCD的面积=9.∵O是AD的中点,∴OD=12∵四边形ABCD是正方形,∴AD=CD,∠ODC=90°,∴12AD∙1解得:AD=6.故答案为6.(2)观察图2和图3可知P,Q两点是在点C处相遇,且相遇前P,Q的速度分别为2和1.相遇后P,Q的运动速度分别为1和3.①当6≤t<8时,如图1,S=正方形的面积-△POD的面积-梯形OABQ的面积.∵PC=t-6,CQ=3(t-6)=3t-18.∴PD=12-t,BQ=24-3t.∴S=36-32=36-18+32=212②当8≤t≤10时,如图2,S=正方形的面积-△POD的面积-△AOQ的面积.∵PC=t-6,BQ=3(t-8)=3t-24,∴PD=12-t,AQ=30-3t.∴S=36-32(12-t)-3=36-18+32t-45+9=6t-27.当10<t≤12时,如图3.S=正方形的面积-△POD的面积.∵PC=t-6,∴P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度知识产权许可使用合同(含知识产权名称、许可范围、许可期限等详细条款)
- 2024年度艺术品采购与展览推广合同
- 2024年度健身服务合同之服务内容与会员权益2篇
- 2024年度农产品购销合同:大米、玉米、小麦等粮食作物的供销协议
- 2024年度股权转让的资产评估协议
- 《鼠标键盘使用》课件
- 2024年度虚拟现实应用合同
- 2024年度企业标志设计服务合同范本
- 《审计课堂案例》课件
- 市政道路工程
- 2024-2030年中国旅游演出行业前景预测及投资运作模式分析报告版
- GB/T 44744-2024粮食储藏低温储粮技术规程
- 苏教版(2024新版)一年级上册科学全册教案教学设计
- 创新创业实训智慧树知到期末考试答案章节答案2024年西安理工大学
- 大学生国家安全教育智慧树知到期末考试答案2024年
- 2024继续教育《医学科研诚信与医学了研究伦理》答案
- 《埃隆·马斯克传》导读
- 打“两卡”共同防范电信网络诈骗 课件 - 高中安全主题班会
- 二 年级上册美术课件-《雪花飘飘》|北京课改版 (共25张PPT)
- 新中国十大元帅!课件
- 供应商年度审核计划及查检表
评论
0/150
提交评论