版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年湖南省常德市澧县车溪乡中学高二数学文上学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.执行如右图所示的程序框图,输出的k的值是(
) A、9
B、10
C、11
D、12参考答案:C2.
设函数,则不等式的解集是(
)A.
B.
C.
D.参考答案:A3.不等式组的区域面积是(
)A.
B.
C.
D.
参考答案:D
解析:画出可行域4.下列命题中正确的是(()A.若p∨q为真命题,则p∧q为真命题B.“a>0,b>0”是“+≥2”的充分必要条件C.命题“若x2﹣3x+2=0,则x=1或x=2”的逆否命题为“若x≠1或x≠2,则x2﹣3x+2≠0”D.命题p:?x0∈R,使得x02+x0﹣1<0,则¬p:?x∈R,使得x2+x﹣1≥0参考答案:D【考点】命题的真假判断与应用.【分析】A根据且命题和或命题的概念判断即可;B均值定理等号成立的条件判断;C或的否定为且;D对存在命题的否定,应把存在改为任意,然后再否定结论.【解答】解:A、若p∨q为真命题,p和q至少有一个为真命题,故p∧q不一定为真命题,故错误;B、“a>0,b>0”要得出“+≥2”,必须a=b时,等号才成立,故不是充分必要条件,故错误;C、命题“若x2﹣3x+2=0,则x=1或x=2”的逆否命题为“若x≠1且x≠2,则x2﹣3x+2≠0”,故错误;D、对存在命题的否定,应把存在改为任意,然后再否定结论,命题p:?x0∈R,使得x02+x0﹣1<0,则¬p:?x∈R,使得x2+x﹣1≥0,故正确.故选:D.5.已知抛物线C:y2=4x上一点A到焦点F的距离与其到对称轴的距离之比为5:4,且|AF|>2,则A点到原点的距离为()A.3 B. C.4 D.参考答案:B【考点】抛物线的简单性质.【分析】设点A的坐标为(x1,y1),求出抛物线的准线方程,结合抛物线的定义建立方程关系进行求解即可.【解答】解:设点A的坐标为(x1,y1),抛物线y2=4x的准线方程为x=﹣1,根据抛物线的定义,点A到焦点的距离等于点A到准线的距离,∵点A到焦点F的距离与其到对称轴的距离之比为5:4,∴=,∵y12=4x1,∴解得x1=或x1=4,∵|AF|>2,∴x1=4,∴A点到原点的距离为=4,故选:B.【点评】本题主要考查抛物线性质和定义的应用,利用抛物线的定义建立方程关系是解决本题的关键.6.已知直线l:x﹣ky﹣5=0与圆O:x2+y2=10交于A,B两点且=0,则k=(
) A.2 B.±2 C.± D.参考答案:B考点:平面向量数量积的运算;直线与圆的位置关系.专题:平面向量及应用.分析:由题意可得弦长AB对的圆心角等于90°,故弦心距等于半径的倍,再利用点到直线的距离公式求得k的值.解答: 解:由题意可得弦长AB对的圆心角等于90°,故弦心距等于半径的倍,等于=,故有=,求得k=±2,故选:B.点评:本题主要考查直线和圆相交的性质,弦长公式、点到直线的距离公式的应用,属于基础题.7.若方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是()A.(0,+∞) B.(0,2) C.(1,+∞) D.(0,1)参考答案:D【考点】椭圆的定义.【分析】先把椭圆方程整理成标准方程,进而根据椭圆的定义可建立关于k的不等式,求得k的范围.【解答】解:∵方程x2+ky2=2,即表示焦点在y轴上的椭圆∴故0<k<1故选D.8.在极坐标系中,曲线关于()
A.直线轴对称BB.直线轴对称D.
C.点中心对称
D.极点中心对称参考答案:B将原极坐标方程,化为:ρ2=2ρsinθ﹣2ρcosθ,化成直角坐标方程为:x2+y2+2x﹣2y=0,是一个圆心在(﹣,1),经过圆心的直线的极坐标方程是直线轴对称.故选B.9.1.已知M={x|y=x2-1},N={y|y=x2-1},则M∩N等于A、N
B、M
C、R
D、Ф参考答案:A10.不同直线m,n和不同平面α,β,给出下列命题:①,②,③,④其中假命题有:(
)A.0个 B.1个 C.2个 D.3个参考答案:D【考点】空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系.【专题】证明题;综合题.【分析】不同直线m,n和不同平面α,β,结合平行与垂直的位置关系,分析和举出反例判定①②③④,即可得到结果.【解答】解:①,m与平面β没有公共点,所以是正确的.②,直线n可能在β内,所以不正确.③,可能两条直线相交,所以不正确.④,m与平面β可能平行,不正确.故选D.【点评】本题考查空间直线与直线,直线与平面的位置关系,考查空间想象能力,逻辑思维能力,是基础题.二、填空题:本大题共7小题,每小题4分,共28分11.曲线在点的切线方程为.参考答案:略12.现有一个关于平面图形的命题:如图,同一平面内有两个边长都是2的正方形,其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为______.参考答案:1【分析】连OA,OB,设OR交BC于M,OP交AB于N,由四边形ABCD为正方形,得到OB=OA,∠BOA=90°,∠MBO=∠OAN=45°,而四边形ORQP为正方形,得∠NOM=90°,所以∠MOB=∠NOA,则△OBM≌△OAN,即可得到S四边形MONB=S△AOB.【详解】解:连OA,OB,设OR交BC于M,OP交AB于N,如图示:∵四边形ABCD为正方形,∴OB=OA,∠BOA=90°,∠MBO=∠OAN=45°,而四边形ORQP为正方形,∴∠NOM=90°,∴∠MOB=∠NOA,∴△OBM≌△OAN,∴S四边形MONB=S△AOB2×2=1,即它们重叠部分的面积为1,故答案为:1【点睛】本题考查旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了正方形的性质.13.已知向量,则参考答案:5因为,所以.
14.已知两直线,,当__________时,有∥。参考答案:1略15.若向量,,则
.参考答案:略16.若在不等式组所确定的平面区域内任取一点,则点的坐标满足的概率是
.参考答案:略17.一只蚂蚁在边长为4的正三角形内爬行,某时刻此蚂蚁距三角形三个顶点的距离均超过1的概率为.参考答案:1﹣【考点】几何概型.【分析】根据题意,记“蚂蚁距三角形三个顶点的距离均超过1”为事件A,则其对立事件为“蚂蚁与三角形的三个顶点的距离不超过1”,先求得边长为4的等边三角形的面积,再计算事件构成的区域面积,由几何概型可得P(),进而由对立事件的概率性质,可得答案.【解答】解:记“蚂蚁距三角形三个顶点的距离均超过1”为事件A,则其对立事件为“蚂蚁与三角形的三个顶点的距离不超过1”,边长为4的等边三角形的面积为S=×42=4,则事件构成的区域面积为S()=3×××π×12=,由几何概型的概率公式得P()==;P(A)=1﹣P()=1﹣;故答案为:1﹣.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在菱形ABCD中,,E是AB的中点,MA⊥平面ABCD,且在正方形ADNM中,.(1)求证:AC⊥BN;(2)求二面角M-EC-D的余弦值.参考答案:19.在中,已知.(1)求角和角的大小;
(2)求的面积.参考答案:解:(1)由,得.所以或;
(4分)(2)或
.
(8分)略20.已知函数f(x)=x+alnx在x=1处的切线与直线x+2y=0垂直,函数g(x)=f(x)+x2﹣bx.(1)求实数a的值;(2)若函数g(x)存在单调递减区间,求实数b的取值范围;(3)设x1,x2(x1<x2)是函数g(x)的两个极值点,若b≥,求g(x1)﹣g(x2)的最小值.参考答案:【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的极值.【分析】(1)求导数,利用导数的几何意义能求出实数a的值.(2)由题意知g′(x)<0在(0,+∞)上有解,即x++1﹣b<0有解,由此能求出实数b的取值范围.(3)g(x1)﹣g(x2)=ln﹣(﹣),由此利用构造成法和导数性质能求出g(x1)﹣g(x2)的最小值.【解答】解:(1)∵f(x)=x+alnx,∴f′(x)=1+,∵f(x)在x=1处的切线l与直线x+2y=0垂直,∴k=f′(x)|x=1=1+a=2,解得a=1.(2)∵g(x)=lnx+﹣(b﹣1)x,∴g′(x)=,x>0,由题意知g′(x)<0在(0,+∞)上有解,即x++1﹣b<0有解,∵定义域x>0,∴x+≥2,x+<b﹣1有解,只需要x+的最小值小于b﹣1,∴2<b﹣1,解得实数b的取值范围是{b|b>3}.(3)∵g(x)=lnx+﹣(b﹣1)x,∴g′(x)==0,∴x1+x2=b﹣1,x1x2=1∴g(x1)﹣g(x2)=ln﹣(﹣)∵0<x1<x2,∴设t=,0<t<1,令h(t)=lnt﹣(t﹣),0<t<1,则h′(t)=﹣<0,∴h(t)在(0,1)上单调递减,又∵b≥,∴(b﹣1)2≥,∵0<t<1,∴4t2﹣17t+4≥0,∴0<t≤,h(t)≥h()=﹣2ln2,故所求的最小值为﹣2ln2.【点评】本题考查实数值的求法,考查函数的最大值的求法,解题时要认真审题,注意导数性质的合理运用.21.某客运公司用A、B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A、B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?参考答案:设A型、B型车辆分别为x、y辆,相应营运成本为z元,则z=1600x+2400y.由题意,得x,y满足约束条件...........................4分作可行域如图所示,可行域的三个顶点坐标分别为P(5,12),Q(7,14),R(15,6)............................2分由图可知,当直线z=1600x+2400y经过可行域的点P时,直线z=1600x+2400y在y轴上的截距最小,即z取得最小值............................3分故应配备A型车5辆、B型车12辆,可以满足公司从甲地去乙地的营运成本最小............................1分22.已知等比数列{an}的前n项和为Sn,且an是Sn与2的等差中项,等差数列{bn}中,b1=2,点P(bn,bn+1}在一次函数y=x+2的图象上.(1)求数列{an},{bn}的通项an和bn;(2)设cn=an?bn,求数列{cn}的前n项和Tn.参考答案:【考点】数列的求和;数列递推式.【分析】(1)利用递推关系与等比数列的通项公式可得an,再利用等差数列的通项公式可得bn.(2)利用“错位相减法”与等比数列的求和公式即可得出.【解答】解:(1)由2an=Sn+2得:2a1=S1+2;即2a1=a1+2,解得a1=2.同理可得:2a2=S2+2;2a1=a1+a2+2,解得a2=4;由2an=Sn+2┅①得2an﹣1=Sn﹣1+2┅②;(n≥2)将两式相减得:2an﹣2an﹣1=Sn﹣S
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《威海节日习俗》课件
- 《室内设计课件》课件
- 单位管理制度集合大合集人力资源管理篇
- 单位管理制度合并选集【员工管理篇】十篇
- 单位管理制度分享汇编员工管理篇
- 单位管理制度分享大全人员管理篇十篇
- 《审计与管理》课件
- 《客房优化方案》课件
- 《诊断思路》课件
- (高频选择题50题)第2单元 社会主义制度的建立与社会主义建设的探索(解析版)
- 2024年全国《国防和兵役》理论知识竞赛试题库与答案
- 企业知识产权保护策略及实施方法研究报告
- 2024年07月11026经济学(本)期末试题答案
- 征信知识测试题及答案
- 理想系列一体化速印机故障代码
- 现代电路技术——故障检测D算法
- 检验科各专业组上岗轮岗培训考核制度全6页
- 钣金与成型 其它典型成形
- 工程停止点检查管理(共17页)
- 爬架安装检查验收记录表1529
- 2021年全国烟草工作会议上的报告
评论
0/150
提交评论