




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学教案模板5篇高中数学教案模板篇11.结合实际问题情景,理解分层抽样的必要性和重要性;2.学会用分层抽样的方法从总体中抽取样本;3.并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系.通过实例理解分层抽样的方法.分层抽样的步骤.一、问题情境1.复习简单随机抽样、系统抽样的概念、特征以及适用范围.2.实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为二、学生活动能否用简单随机抽样或系统抽样进行抽样,为什么?指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性.三、建构数学1.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”.说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.各自特点互联系适用范围样抽样过程中每个个体被抽取的概率是相同的从总体中逐个抽取总体中的个体数较少将总体均分成几个部分,按事先确定的规则在各部分抽取在第一部分抽样时采用简单随机抽样总体中的个体数较多抽样将总体分成几层,分层进行抽取各层抽样时采用简单随机抽样或系统总体由差异明显的几部分组成3.分层抽样的步骤:(1)分层:将总体按某种特征分成若干部分.(2)确定比例:计算各层的个体数与总体的个体数的比.(3)确定各层应抽取的样本容量.(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.1.例题.例1(1)分层抽样中,在每一层进行抽样可用_________________.(2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;人不及格.现欲从中抽出8人研讨进一步改进教和学;③某班元旦聚会,要产生两名“幸运者”.对这三件事,合适的抽样方法为A.分层抽样,分层抽样,简单随机抽样B.系统抽样,系统抽样,简单随机抽样C.分层抽样,简单随机抽样,简单随机抽样D.系统抽样,分层抽样,简单随机抽样例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?然后在各层用简单随机抽样方法抽取.答用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值.160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的某意见,拟抽取一个容量为20的样本.分析:(1)总体容量较小,用抽签法或随机数表法都很方便.(2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样.(3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法.五、要点归纳与方法小结1.分层抽样的概念与特征;2.三种抽样方法相互之间的区别与联系.高中数学教案模板篇2一、教学目标理解任意角的概念(包括正角、负角、零角)与区间角的概会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。1、提高学生的推理能力;同角的集合的表示;区间角的集合的书写。三、教学过程(一)导入新课①角的第一种定义是有公共端点的两条射线组成的图形叫做②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。(二)教学新课角可以看成平面内一条射线绕着端点从一个位置旋转到另一⑴在不引起混淆的情况下,“角α”或“∠α”可以简化成“α”;⑵零角的终边与始边重合,如果α是零角α=0°;⑶角的概念经过推广后,已包括正角、负角和零角。⑤练习:请说出角α、β、γ各是多少度?①定义:若将角顶点与原点重合,角的始边与_轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角例1、如图⑴⑵中的角分别属于第几象限角?高中数学教案模板篇3[学习目标](1)会用坐标法及距离公式证明Cα+β;(2)会用替代法、诱导公式、同角三角函数关系式,由Cα+β推导Cα—β、Sα±β、Tα±β,切实理解上述公式间的关系与相互转化;(3)掌握公式Cα±β、Sα±β、Tα±β,并利用简单的三角变换,解决求值、化简三角式、证明三角恒等式等问题。[学习重点]两角和与差的正弦、余弦、正切公式[学习难点]余弦和角公式的推导[知识结构]1、两角和的余弦公式是三角函数一章和、差、倍公式系列的基础。其公式的证明是用坐标法,利用三角函数定义及平面内两点间的距离公式,把两角和α+β的余弦,化为单角α、β的三角函数(证明过程见课本)2、通过下面各组数的值的比较:①cos(30°—90°)与cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我们应该得出如下结论:一般情况下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。3、当α、β中有一个是的整数倍时,应首选诱导公式进行变形。注意两角和与差的三角函数是诱导公式等的基础,而诱导公式是两角和与差的三角函数的特例。的正用、逆用及变用高中数学教案模板篇4一、教学目标知识与技能掌握三角函数的单调性以及三角函数值的取值范围。过程与方法经历三角函数的单调性的探索过程,提升逻辑推理能力。情感态度价值观在猜想计算的过程中,提高学习数学的兴趣。二、教学重难点教学重点三角函数的单调性以及三角函数值的取值范围。教学难点探究三角函数的单调性以及三角函数值的取值范围过程。三、教学过程(一)引入新课提出问题:如何研究三角函数的单调性(二)小结作业提问:今天学习了什么?引导学生回顾:基本不等式以及推导证明过程。思考如何用三角函数单调性比较三角函数值的大小。高中数学教案模板篇5一、教学目标知识与技能在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 代驾司机岗位面试问题及答案
- 2025届湖北省示范初中高一下化学期末检测模拟试题含解析
- 太原市重点中学2025年高一化学第二学期期末综合测试模拟试题含解析
- 河北省衡水滁州分校2025届化学高一下期末考试试题含解析
- 河南文物钻探管理办法
- 机构合作管理暂行办法
- 北京药品直供管理办法
- 智慧治理视角下基层指挥中心数字化管理效能提升研究
- 关键绩效指标体系构建与应用研究
- 民族院校师生管理办法
- GB/T 13914-2013冲压件尺寸公差
- 机场卫星厅-功能流程
- 初中数学华东师大版八年级上册第十三章全等三角形单元复习-学案:第13章全等三角形复习
- 教师专业发展与职业生涯规划
- 会计师事务所员工绩效考评新版制度
- 气钉枪安全培训教材PPT学习教案
- 小学数学图形与几何知识点归纳汇总
- APQP培训教材PPT课件
- JC∕T 1083-2008 水泥与减水剂相容性试验方法
- 食品工程原理(李云飞)第二章ppt 传热
- 二氧化碳气体保护焊.ppt
评论
0/150
提交评论