2024届江苏省徐州市丰县市级名校中考考前最后一卷数学试卷含解析_第1页
2024届江苏省徐州市丰县市级名校中考考前最后一卷数学试卷含解析_第2页
2024届江苏省徐州市丰县市级名校中考考前最后一卷数学试卷含解析_第3页
2024届江苏省徐州市丰县市级名校中考考前最后一卷数学试卷含解析_第4页
2024届江苏省徐州市丰县市级名校中考考前最后一卷数学试卷含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省徐州市丰县市级名校中考考前最后一卷数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算中,正确的是()A.x2+5x2=6x4 B.x3 C. D.2.如图,等腰直角三角形纸片ABC中,∠C=90°,把纸片沿EF对折后,点A恰好落在BC上的点D处,点CE=1,AC=4,则下列结论一定正确的个数是()①∠CDE=∠DFB;②BD>CE;③BC=CD;④△DCE与△BDF的周长相等.A.1个 B.2个 C.3个 D.4个3.如图,Rt△ABC中,∠C=90°,∠A=35°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=()A.35° B.60° C.70° D.70°或120°4.四张分别画有平行四边形、菱形、等边三角形、圆的卡片,它们的背面都相同。现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是()A. B.1 C. D.5.若数a使关于x的不等式组有解且所有解都是2x+6>0的解,且使关于y的分式方程+3=有整数解,则满足条件的所有整数a的个数是()A.5 B.4 C.3 D.26.下列命题是真命题的是()A.如实数a,b满足a2=b2,则a=bB.若实数a,b满足a<0,b<0,则ab<0C.“购买1张彩票就中奖”是不可能事件D.三角形的三个内角中最多有一个钝角7.一个多边形的每一个外角都等于72°,这个多边形是()A.正三角形 B.正方形 C.正五边形 D.正六边形8.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定9.抛物线y=–x2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所示:x…–2–1012…y…04664…从上表可知,下列说法错误的是A.抛物线与x轴的一个交点坐标为(–2,0) B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0 D.抛物线在对称轴左侧部分是上升的10.二次函数(a≠0)的图象如图所示,则下列命题中正确的是()A.a>b>cB.一次函数y=ax+c的图象不经第四象限C.m(am+b)+b<a(m是任意实数)D.3b+2c>011.A、B两地相距180km,新修的高速公路开通后,在A、B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为A. B.C. D.12.已知正方形ABCD的边长为4cm,动点P从A出发,沿AD边以1cm/s的速度运动,动点Q从B出发,沿BC,CD边以2cm/s的速度运动,点P,Q同时出发,运动到点D均停止运动,设运动时间为x(秒),△BPQ的面积为y(cm2),则y与x之间的函数图象大致是()A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出2个球,都是黄球的概率为.14.方程的解是__________.15.计算的结果是______.16.如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知甲楼的高AB是120m,则乙楼的高CD是_____m(结果保留根号)17.如图,一次函数y1=kx+b的图象与反比例函数y2=(x<0)的图象相交于点A和点B.当y1>y2>0时,x的取值范围是_____.18.(11·湖州)如图,已知A、B是反比例函数(k>0,x<0)图象上的两点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解不等式组,并把解集在数轴上表示出来.20.(6分)先化简,再求值:(﹣1)÷,其中x=1.21.(6分)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,-3),动点P在抛物线上.(1)b=_________,c=_________,点B的坐标为_____________;(直接填写结果)(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.22.(8分)已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.求证:DE是⊙O的切线;若DE=6cm,AE=3cm,求⊙O的半径.23.(8分)已知抛物线y=x2﹣(2m+1)x+m2+m,其中m是常数.(1)求证:不论m为何值,该抛物线与z轴一定有两个公共点;(2)若该抛物线的对称轴为直线x=,请求出该抛物线的顶点坐标.24.(10分)在矩形ABCD中,两条对角线相交于O,∠AOB=60°,AB=2,求AD的长.25.(10分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.求证:PD是⊙O的切线;求证:△ABD∽△DCP;当AB=5cm,AC=12cm时,求线段PC的长.26.(12分)解不等式组:并把解集在数轴上表示出来.27.(12分)如图,四边形ABCD是边长为2的正方形,以点A,B,C为圆心作圆,分别交BA,CB,DC的延长线于点E,F,G.(1)求点D沿三条圆弧运动到点G所经过的路线长;(2)判断线段GB与DF的长度关系,并说明理由.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】分析:直接利用积的乘方运算法则及合并同类项和同底数幂的乘除运算法则分别分析得出结果.详解:A.x2+5x2=,本项错误;B.,本项错误;C.,正确;D.,本项错误.故选C.点睛:本题主要考查了积的乘方运算及合并同类项和同底数幂的乘除运算,解答本题的关键是正确掌握运算法则.2、D【解析】等腰直角三角形纸片ABC中,∠C=90°,∴∠A=∠B=45°,由折叠可得,∠EDF=∠A=45°,∴∠CDE+∠BDF=135°,∠DFB+∠B=135°,∴∠CDE=∠DFB,故①正确;由折叠可得,DE=AE=3,∴CD=,∴BD=BC﹣DC=4﹣>1,∴BD>CE,故②正确;∵BC=4,CD=4,∴BC=CD,故③正确;∵AC=BC=4,∠C=90°,∴AB=4,∵△DCE的周长=1+3+2=4+2,由折叠可得,DF=AF,∴△BDF的周长=DF+BF+BD=AF+BF+BD=AB+BD=4+(4﹣2)=4+2,∴△DCE与△BDF的周长相等,故④正确;故选D.点睛:本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、D【解析】

①当点B落在AB边上时,根据DB=DB1,即可解决问题,②当点B落在AC上时,在RT△DCB2中,根据∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解决问题.【详解】①当点B落在AB边上时,∵DB=DB∴∠B=∠DB∴m=∠BDB②当点B落在AC上时,在RT△DCB∵∠C=90°,DB∴∠CB∴m=∠C+∠CB故选D.【点睛】本题考查的知识点是旋转的性质,解题关键是考虑多种情况,进行分类讨论.4、A【解析】∵在:平行四边形、菱形、等边三角形和圆这4个图形中属于中心对称图形的有:平行四边形、菱形和圆三种,∴从四张卡片中任取一张,恰好是中心对称图形的概率=.故选A.5、D【解析】

由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可.【详解】不等式组整理得:,由不等式组有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a,即y=,由分式方程有整数解,得到a=0,2,共2个,故选:D.【点睛】本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.6、D【解析】

A.两个数的平方相等,这两个数不一定相等,有正负之分即可判断B.同号相乘为正,异号相乘为负,即可判断C.“购买1张彩票就中奖”是随机事件即可判断D.根据三角形内角和为180度,三个角中不可能有两个以上钝角即可判断【详解】如实数a,b满足a2=b2,则a=±b,A是假命题;数a,b满足a<0,b<0,则ab>0,B是假命题;若实“购买1张彩票就中奖”是随机事件,C是假命题;三角形的三个内角中最多有一个钝角,D是真命题;故选:D【点睛】本题考查了命题与定理,根据实际判断是解题的关键7、C【解析】

任何多边形的外角和是360°,用360°除以一个外角度数即可求得多边形的边数.【详解】360°÷72°=1,则多边形的边数是1.故选C.【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.8、B【解析】试题分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有两个不相等的实数根.故答案选B.考点:一元二次方程根的判别式.9、C【解析】当x=-2时,y=0,

∴抛物线过(-2,0),

∴抛物线与x轴的一个交点坐标为(-2,0),故A正确;

当x=0时,y=6,

∴抛物线与y轴的交点坐标为(0,6),故B正确;

当x=0和x=1时,y=6,

∴对称轴为x=,故C错误;

当x<时,y随x的增大而增大,

∴抛物线在对称轴左侧部分是上升的,故D正确;

故选C.10、D【解析】解:A.由二次函数的图象开口向上可得a>0,由抛物线与y轴交于x轴下方可得c<0,由x=﹣1,得出=﹣1,故b>0,b=2a,则b>a>c,故此选项错误;B.∵a>0,c<0,∴一次函数y=ax+c的图象经一、三、四象限,故此选项错误;C.当x=﹣1时,y最小,即a﹣b﹣c最小,故a﹣b﹣c<am2+bm+c,即m(am+b)+b>a,故此选项错误;D.由图象可知x=1,a+b+c>0①,∵对称轴x=﹣1,当x=1,y>0,∴当x=﹣3时,y>0,即9a﹣3b+c>0②①+②得10a﹣2b+2c>0,∵b=2a,∴得出3b+2c>0,故选项正确;故选D.点睛:此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y=a+b+c,然后根据图象判断其值.11、A【解析】

直接利用在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h,利用时间差值得出等式即可.【详解】解:设原来的平均车速为xkm/h,则根据题意可列方程为:﹣=1.故选A.【点睛】本题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题的关键.12、B【解析】

根据题意,Q点分别在BC、CD上运动时,形成不同的三角形,分别用x表示即可.【详解】(1)当0≤x≤2时,BQ=2x当2≤x≤4时,如下图由上可知故选:B.【点睛】本题是双动点问题,解答时要注意讨论动点在临界两侧时形成的不同图形,并要根据图形列出函数关系式.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、【解析】

让黄球的个数除以球的总个数即为所求的概率.【详解】解:因为一共10个球,其中3个黄球,所以从袋中任意摸出2个球是黄球的概率是.

故答案为:.【点睛】本题考查了概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.14、.【解析】

根据解分式方程的步骤依次计算可得.【详解】解:去分母,得:,解得:,当时,,所以是原分式方程的解,故答案为:.【点睛】本题主要考查解分式方程,解题的关键是熟练掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.15、【解析】

二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【详解】.【点睛】考点:二次根式的加减法.16、40【解析】

利用等腰直角三角形的性质得出AB=AD,再利用锐角三角函数关系即可得出答案.【详解】解:由题意可得:∠BDA=45°,则AB=AD=120m,又∵∠CAD=30°,∴在Rt△ADC中,tan∠CDA=tan30°=,解得:CD=40(m),故答案为40.【点睛】此题主要考查了解直角三角形的应用,正确得出tan∠CDA=tan30°=是解题关键.17、-2<x<-0.5【解析】

根据图象可直接得到y1>y2>0时x的取值范围.【详解】根据图象得:当y1>y2>0时,x的取值范围是﹣2<x<﹣0.5,故答案为﹣2<x<﹣0.5.【点睛】本题考查了反比例函数与一次函数的交点问题,熟悉待定系数法以及理解函数图象与不等式的关系是解题的关键.18、A【解析】试题分析:①当点P在OA上运动时,OP=t,S=OM•PM=tcosα•tsinα,α角度固定,因此S是以y轴为对称轴的二次函数,开口向上;②当点P在AB上运动时,设P点坐标为(x,y),则S=xy=k,为定值,故B、D选项错误;③当点P在BC上运动时,S随t的增大而逐渐减小,故C选项错误.故选A.考点:1.反比例函数综合题;2.动点问题的函数图象.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、不等式组的解集为,在数轴上表示见解析.【解析】

先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【详解】由2(x+2)≤3x+3,可得:x≥1,由,可得:x<3,则不等式组的解为:1≤x<3,不等式组的解集在数轴上表示如图所示:【点睛】本题考查了一元一次不等式组,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.20、-1.【解析】

先化简题目中的式子,再将x的值代入化简后的式子即可解答本题.【详解】解:原式=,=,=,=﹣,当x=1时,原式=﹣=﹣1.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则21、(1),,(-1,0);(2)存在P的坐标是或;(1)当EF最短时,点P的坐标是:(,)或(,)【解析】

(1)将点A和点C的坐标代入抛物线的解析式可求得b、c的值,然后令y=0可求得点B的坐标;(2)分别过点C和点A作AC的垂线,将抛物线与P1,P2两点先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A与抛物线的交点坐标即可;(1)连接OD.先证明四边形OEDF为矩形,从而得到OD=EF,然后根据垂线段最短可求得点D的纵坐标,从而得到点P的纵坐标,然后由抛物线的解析式可求得点P的坐标.【详解】解:(1)∵将点A和点C的坐标代入抛物线的解析式得:,解得:b=﹣2,c=﹣1,∴抛物线的解析式为.∵令,解得:,,∴点B的坐标为(﹣1,0).故答案为﹣2;﹣1;(﹣1,0).(2)存在.理由:如图所示:①当∠ACP1=90°.由(1)可知点A的坐标为(1,0).设AC的解析式为y=kx﹣1.∵将点A的坐标代入得1k﹣1=0,解得k=1,∴直线AC的解析式为y=x﹣1,∴直线CP1的解析式为y=﹣x﹣1.∵将y=﹣x﹣1与联立解得,(舍去),∴点P1的坐标为(1,﹣4).②当∠P2AC=90°时.设AP2的解析式为y=﹣x+b.∵将x=1,y=0代入得:﹣1+b=0,解得b=1,∴直线AP2的解析式为y=﹣x+1.∵将y=﹣x+1与联立解得=﹣2,=1(舍去),∴点P2的坐标为(﹣2,5).综上所述,P的坐标是(1,﹣4)或(﹣2,5).(1)如图2所示:连接OD.由题意可知,四边形OFDE是矩形,则OD=EF.根据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短.由(1)可知,在Rt△AOC中,∵OC=OA=1,OD⊥AC,∴D是AC的中点.又∵DF∥OC,∴DF=OC=,∴点P的纵坐标是,∴,解得:x=,∴当EF最短时,点P的坐标是:(,)或(,).22、解:(1)证明见解析;(2)⊙O的半径是7.5cm.【解析】

(1)连接OD,根据平行线的判断方法与性质可得∠ODE=∠DEM=90°,且D在⊙O上,故DE是⊙O的切线.(2)由直角三角形的特殊性质,可得AD的长,又有△ACD∽△ADE.根据相似三角形的性质列出比例式,代入数据即可求得圆的半径.【详解】(1)证明:连接OD.∵OA=OD,∴∠OAD=∠ODA.∵∠OAD=∠DAE,∴∠ODA=∠DAE.∴DO∥MN.∵DE⊥MN,∴∠ODE=∠DEM=90°.即OD⊥DE.∵D在⊙O上,OD为⊙O的半径,∴DE是⊙O的切线.(2)解:∵∠AED=90°,DE=6,AE=3,∴.连接CD.∵AC是⊙O的直径,∴∠ADC=∠AED=90°.∵∠CAD=∠DAE,∴△ACD∽△ADE.∴.∴.则AC=15(cm).∴⊙O的半径是7.5cm.考点:切线的判定;平行线的判定与性质;圆周角定理;相似三角形的判定与性质.23、(1)见解析;(2)顶点为(,﹣)【解析】

(1)根据题意,由根的判别式△=b2﹣4ac>0得到答案;(2)结合题意,根据对称轴x=﹣得到m=2,即可得到抛物线解析式为y=x2﹣5x+6,再将抛物线解析式为y=x2﹣5x+6变形为y=x2﹣5x+6=(x﹣)2﹣,即可得到答案.【详解】(1)证明:a=1,b=﹣(2m+1),c=m2+m,∴△=b2﹣4ac=[﹣(2m+1)]2﹣4×1×(m2+m)=1>0,∴抛物线与x轴有两个不相同的交点.(2)解:∵y=x2﹣(2m+1)x+m2+m,∴对称轴x=﹣==,∵对称轴为直线x=,∴=,解得m=2,∴抛物线解析式为y=x2﹣5x+6,∵y=x2﹣5x+6=(x﹣)2﹣,∴顶点为(,﹣).【点睛】本题考查根的判别式、对称轴和顶点,解题的关键是掌握根的判别式、对称轴和顶点的计算和使用.24、【解析】试题分析:由矩形的对角线相等且互相平分可得:OA=OB=OD,再由∠AOB=60°可得△AOB是等边三角形,从而得到OB=OA=2,则BD=4,最后在Rt△ABD中,由勾股定理可解得AD的长.试题解析:∵四边形ABCD是矩形,∴OA=OB=OD,∠BAD=90°,∵∠AOB=60°,∴△AOB是等边三角形,∴OB=OA=2,∴BD=2OB=4,在Rt△ABD中∴AD===.25、(1)证明见解析;(2)证明见解析;(3)CP=16.9cm.【解析】【分析】(1)先判断出∠BAC=2∠BAD,进而判断出∠BOD=∠BAC=90°,得出PD⊥OD即可得出结论;(2)先判断出∠ADB=∠P,再判断出∠DCP=∠ABD,即可得出结论;(3)先求出BC,再判断出BD=CD,利用勾股定理求出BC=BD=,最后用△ABD∽△DCP得出比例式求解即可得出结论.【详解】(1)如图,连接OD,∵BC是⊙O的直径,∴∠BAC=90°,∵AD平分∠BAC,∴∠BAC=2∠BAD,∵∠BOD=2∠BAD,∴∠BOD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论