四川省资阳市护建中学2022-2023学年高二数学文期末试卷含解析_第1页
四川省资阳市护建中学2022-2023学年高二数学文期末试卷含解析_第2页
四川省资阳市护建中学2022-2023学年高二数学文期末试卷含解析_第3页
四川省资阳市护建中学2022-2023学年高二数学文期末试卷含解析_第4页
四川省资阳市护建中学2022-2023学年高二数学文期末试卷含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省资阳市护建中学2022-2023学年高二数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知点P(t,t),点M是圆O1:x2+(y﹣1)2=上的动点,点N是圆O2:(x﹣2)2+y2=上的动点,则|PN|﹣|PM|的最大值是()A.1 B.﹣2 C.2+ D.2参考答案:D【考点】两点间的距离公式.【分析】先根据两圆的方程求出圆心和半径,结合图形,把求PN﹣PM的最大值转化为PO2﹣PO1+1的最大值,再利用PO2﹣PO1=PO2﹣PO1′≤O1′O2=1,即可求出对应的最大值.【解答】解:如图所示,圆O1:x2+(y﹣1)2=的圆心O1(0,1),圆O2:(x﹣2)2+y2=的圆心O2(2,0),这两个圆的半径都是;要使PN﹣PM最大,需PN最大,且PM最小,由图可得,PN最大值为PO2+,PM的最小值为PO1﹣,故PN﹣PM最大值是(PO2+)﹣(PO1﹣)=PO2﹣PO1+1,点P(t,t)在直线y=x上,O1(0,1)关于y=x的对称点O1′(1,0),直线O2O1′与y=x的交点为原点O,则PO2﹣PO1=PO2﹣PO1′≤O1′O2=1,故PO2﹣PO1+1的最大值为1+1=2,即|PN|﹣|PM|的最大值为2.故选D.2.已知x,,且满足,那么的最小值为A. B. C. D.参考答案:B由题意可得(2y-1)(x-1)=1,变形为,所以,所以,当且仅当时,等号成立,即,选B.【点睛】求用均值不等式求和的最小值,需要构造一个积为定值的式子,所以本题把原式变形为,正好可以用均值不等式,注意等号成立条件。3.“”是“”的(

)A.充分不必要条件

B.必要不充分条件C.充分必要条件

D.既不充分也不必要条件

参考答案:B略4.函数在区间 C.(﹣∞,5) D.(﹣∞,5]参考答案:B【考点】6B:利用导数研究函数的单调性.【分析】要使函数f(x)在区间(1,+∞)上是减函数,我们可以转化为f′(x)≤0在区间(1,+∞)上恒成立的问题来求解,然后利用二次函数的单调区间于对称轴的关系来解答也可达到目标.【解答】解:∵函数,在区间.故选:B.【点评】本题以函数为载体,综合考查利用函数的导数来解决有关函数的单调性,考查已知函数的单调性的条件下怎样求解参数的范围问题,考查分类讨论,函数与方程,等数学思想与方法.5.直线x﹣y+1=0的倾斜角为()A. B. C. D.参考答案:A【考点】直线的倾斜角.【分析】x﹣y+1=0变为:y=x+1,求出它的斜率,进而求出倾斜角.【解答】解:将x﹣y+1=0变为:y=x+1,则直线的斜率k=1,由tan=1得,所求的倾斜角是,故选A.【点评】由直线方程求直线的斜率或倾斜角,需要转化为斜截式求出斜率,再由公式对应的倾斜角.6.直线:x+y-=0的倾斜角为A.300

B.450

C.600

D.1350参考答案:D7.用4种不同颜色给甲、乙两个小球随机涂色,每个小球只涂一种颜色,则两个小球颜色不同的概率为(

)A.

B.

C.

D.参考答案:A8.以的虚部为实部,以的实部为虚部的复数是(

)参考答案:A略9.设x,y满足约束条件,若目标函数z=x+y(m>0)的最大值为2,则y=sin(mx+)的图象向右平移后的表达式为()A.y=sin(2x+)B.y=sin(x+)C.y=sin2x D.y=sin(2x+)参考答案:C【考点】简单线性规划;函数y=Asin(ωx+φ)的图象变换.【分析】作出不等式组对应的平面区域,利用线性规划的知识求出m的值,利用三角函数的图象关系进行平移即可.【解答】解:作出不等式组对应的平面区域如图,∵m>0,∴平移直线,则由图象知,直线经过点B时,直线截距最大,此时z最大为2,由,解得,即B(1,1),则1+=2,解得m=2,则=sin(2x+),则的图象向右平移后,得到y=sin[2(x﹣)+]=sin2x,故选:C.

【点评】本题主要考查三角函数解析式的求解以及线性规划的应用,根据条件求出m的取值是解决本题的关键.10.已知||=8,||=5,则||的取值范围是()A.[5,13]

B.[3,13]

C.[8,13]

D.[5,8]参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.某课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应城市数分别为4,12,8,若用分层抽样抽取6个城市,则丙组中应抽取的城市数为_______。参考答案:2【分析】根据抽取6个城市作为样本,得到每个个体被抽到的概率,用概率乘以丙组的数目,即可得到结果.【详解】城市有甲、乙、丙三组,对应的城市数分别为4,12,8.

本市共有城市数24,用分层抽样的方法从中抽取一个容量为6的样本,

每个个体被抽到的概率是,丙组中对应的城市数8,则丙组中应抽取的城市数为,故答案为2.【点睛】本题主要考查分层抽样的应用以及古典概型概率公式的应用,属于基础题.分层抽样适合总体中个体差异明显,层次清晰的抽样,其主要性质是,每个层次,抽取的比例相同.12.任取x,y∈[0,3],则x+y>4的概率为.参考答案:【考点】几何概型.【分析】该题涉及两个变量,故是与面积有关的几何概型,分别表示出满足条件的面积和整个区域的面积,最后利用概率公式解之即可.【解答】解:由题意可得,区域为边长为3的正方形,面积为9,满足x+y>4的区域的面积为=2,由几何概型公式可得x+y>4概率为,故答案为:.13.已知直线l的斜率为,且和两坐标轴围成面积为3的三角形,则直线l的方程为___________.参考答案:略14.如果复数的实部和虚部相等,则实数a等于: 参考答案:【考点】复数代数形式的乘除运算. 【专题】数系的扩充和复数. 【分析】由复数代数形式的除法运算化简,然后由实部等于虚部求解. 【解答】解:=, ∵复数的实部和虚部相等, ∴2﹣a=2a+1,即a=. 故答案为:. 【点评】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.15.已知集合表示的平面区域为Ω,若在区域Ω内任取一点P(x,y),则点P的坐标满足不等式x2+y2≤2的概率为.参考答案:【考点】简单线性规划.【分析】由

我们易画出图象求出其对应的面积,即所有基本事件总数对应的几何量,再求出区域内和圆重合部分的面积,代入几何概型计算公式,即可得到答案.【解答】解:满足区域为△ABO内部(含边界),与圆x2+y2=2的公共部分如图中阴影扇形部分所示,则点P落在圆x2+y2=2内的概率概率为:P===.故答案为:.16.与椭圆有公共焦点,且离心率的双曲线方程为__________.参考答案:17.在行列矩阵中,记位于第行第列的数为,当时,参考答案:45三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为=(a>0),过点的直线l的参数方程为(t为参数),直线l与曲线C相交于A,B两点.(Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程;

(Ⅱ)若,求a的值.参考答案:解:(Ⅰ)由得,∴曲线的直角坐标方程为.………………2分直线的普通方程为.………………4分(Ⅱ)将直线的参数方程代入曲线的直角坐标方程中,得,设两点对应的参数分别为,则有.………………6分∵,∴,即.………………9分∴.解之得:或(舍去),∴的值为.……………12分

略19.(本小题满分12分)医生的专业能力参数可有效衡量医生的综合能力,越大,综合能力越强,并规定:能力参数不少于30称为合格,不少于50称为优秀.某市卫生管理部门随机抽取300名医生进行专业能力参数考核,得到如图所示的能力的频率分布直方图:(Ⅰ)求出这个样本的合格率、优秀率;(Ⅱ)现用分层抽样的方法从中抽出一个样本容量为20的样本,再从这20名医生中随机选出2名.①求这2名医生的能力参数为同一组的概率;②设这2名医生中能力参数为优秀的人数为,求随机变量的分布列和期望.参考答案:(1)合格率是:优秀率是:

…………3分(2)由题意知,这20名医生中,有4人,有6人,有4人,有3人,有2人,有1人①

…………7分②优秀的人数为:3+2+1=6人,的分布列是:012故的期望是

…………12分20. 已知命题:,命题:方程表示焦点在轴上的双曲线.(Ⅰ)命题为真命题,求实数的取值范围;(Ⅱ)若命题“”为真,命题“”为假,求实数的取值范围.

参考答案:解:(1)当命题为真时,由已知得,解得∴当命题为真命题时,实数的取值范围是

…5分(2)当命题为真时,由解得

…7分由题意得命题、中有一真命题、有一假命题

………8分当命题为真、命题为假时,则,解得或.

…………………10分当命题为假、命题为真时,则,无解.

…………12分∴实数的取值范围

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论