




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市西中学高二数学文知识点试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知椭圆的左、右焦点分别为F1、F2,且|F1F2|=2c,点A在椭圆上,,,则椭圆的离心率e=(
)A. B. C. D.参考答案:C【考点】平面向量数量积的运算;椭圆的简单性质.【专题】计算题.【分析】本题考查的知识点是平面向量的数量积运算及椭圆的简单性质,由,,我们将两式相减后得到AF1的长度,再根据椭圆的定义,即可找到a与c之间的数量关系,进而求出离心率e.【解答】解:∵∴AF1⊥F1F2即A点的横坐标与左焦点相同又∵A在椭圆上,∴A(﹣C,±)又∴=c2即=2=c2即AF1=c则2a=c+c∴e=故选C【点评】求椭圆的离心率,即是在找a与c之间的关系,我们只要根据已知中的其它条件,构造方程(组),或者进行转化,转化为一个关于e的方程,解方程(组),易得e值.2.在△ABC中,,则cosC的值为(
)A.
B.-
C.
D.-参考答案:D略3.已知△的三边长成公差为的等差数列,且最大角的正弦值为,则这个三角形的周长是(
)A.
B.
C.
D.参考答案:D略4.若点到点及的距离之和最小,则的值为
(
)A.
B.1
C.2
D.参考答案:A5.为了在运行下面的程序之后得到输出y=16,键盘输入x应该是(
)A.或
B.
C.或
D.或参考答案:C6.若两条不同的直线与同一平面所成的角相等,则这两条直线A.平行
B.相交
C.异面
D.以上皆有可能参考答案:D略7.已知双曲线的左焦点为,右顶点为,过点且垂直于轴的直线与双曲线相交于不同的两点,,若为锐角三角形,则双曲线的离心率的取值范围为(
)A.(1,2) B.(1,2] C.(2,3] D.[2,3)参考答案:A8.在“近似替代”中,函数f(x)在区间上的近似值()A.只能是左端点的函数值f(xi)B.只能是右端点的函数值f(xi+1)C.可以是该区间内的任一函数值f(ξi)(ξi∈)D.以上答案均正确参考答案:C【考点】56:二分法求方程的近似解.【分析】本题考查的是二分法求函数的近似区间的问题.在解答时,要结合二分法的分析规律对选项进行分析即可获得问题的解答.【解答】解:由题意可知:对于函数y=f(x)在“近似替代”中,函数f(x)在区间上的近似值,可以是该区间内的任一函数值f(ξi)(ξi∈)故选C.9.已知不等式组,其表示的平面区域为,若直线与平面区域由公共点,则的取值范围为()A、
B、
C、
D、参考答案:C略10.直线l:x+y+3=0的倾斜角α为()A.30° B.60° C.120° D.150°参考答案:C【考点】直线的倾斜角.【分析】由题意可得,直线的斜率tanα=﹣,再由0°≤α<180°,可得α的值.【解答】解:由于直线l:x+y+3=0的倾斜角为α,则直线的斜率tanα=﹣,再由0°≤α<180°,可得α=120°,故选C.二、填空题:本大题共7小题,每小题4分,共28分11.在平面直角坐标系中,双曲线C的中心在原点,它的一个焦点坐标为,、分别是两条渐近线的方向向量。任取双曲线C上的点,若(、),则、满足的一个等式是
。参考答案:4ab=112.已知(2,0)是双曲线x2﹣=1(b>0)的一个焦点,则b=
.参考答案:【考点】双曲线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】求得双曲线x2﹣=1(b>0)的焦点为(,0),(﹣,0),可得b的方程,即可得到b的值.【解答】解:双曲线x2﹣=1(b>0)的焦点为(,0),(﹣,0),由题意可得=2,解得b=.故答案为:.【点评】本题考查双曲线的方程和性质,主要考查双曲线的焦点的求法,属于基础题.13.已知直线与平面区域C:的边界交于A,B两点,若,则的取值范围是
.参考答案:14.底面半径为1高为3的圆锥的体积为.参考答案:π【考点】旋转体(圆柱、圆锥、圆台).【分析】利用圆锥的体积公式,能求出结果.【解答】解:底面半径为1高为3的圆锥的体积为:V==π.故答案为:π.15.某女生寝室有4位同学,现在要拍一张集体照,①若甲,乙两名同学要求站在一起,则有___________排法;②若甲同学要求站在中间,则有__________种不同排法.参考答案:12
;
12
;
16.已知矩形的长,宽,将其沿对角线折起,得到三棱锥,给出下列结论:①三棱锥体积的最大值为;②三棱锥外接球的表面积恒为定值;③若分别为棱的中点,则恒有且;
④当二面角为直二面角时,直线所成角的余弦值为;⑤当二面角的大小为60°时,棱的长为.其中正确的结论有
(请写出所有正确结论的序号).参考答案:①②③④17.如图,圆O:x2+y2=内的正弦曲线y=sinx与x轴围成的区域记为M(图中阴影部分),随机向圆O内投一个点P,则点P落在区域内的概率是_________参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题满分10分)已知数列是公差不为零的等差数列,=1,且成等比数列.(1)求数列的通项;(2)设,求数列的前n项和Sn.参考答案:(1)由题设知公差d≠0,由a1=1,a1,a3,a9成等比数列得=,解得d=1,d=0(舍去),故{an}的通项an=1+(n-1)×1=n.(2)由(1)知2an=2n,由等比数列前n项和公式得Sn=2+22+23+…+2n==2n+1-2略19.已知函数,在点处的切线方程是(e为自然对数的底)。(1)求实数的值及的解析式;(2)若是正数,设,求的最小值;(3)若关于x的不等式对一切恒成立,求实数的取值范围。参考答案:(1)依题意有;故实数(4分)
(2),的定义域为; 增函数减函数(8分)(3)由(2)知对一切恒成立故实数的取值范围.(12分)20.设函数f(x)=x2+|x﹣2|﹣1,x∈R.(1)判断函数f(x)的奇偶性;(2)求函数f(x)的最小值.参考答案:解:(1)f(x)=若f(x)奇函数,则f(﹣x)=﹣f(x)所以f(0)=﹣f(0),即f(0)=0.∵f(0)=1≠0,∴f(x)不是R上的奇函数.又∵f(1)=1,f(﹣1)=3,f(1)≠f(﹣1),∴f(x)不是偶函数.故f(x)是非奇非偶的函数.(2)当x≥2时,f(x)=x2+x﹣3,为二次函数,对称轴为直线x=,则f(x)为[2,+∞)上的增函数,此时f(x)min=f(2)=3.当x<2时,f(x)=x2﹣x+1,为二次函数,对称轴为直线x=则f(x)在(﹣∞,)上为减函数,在[,2)上为增函数,此时f(x)min=f()=.综上,f(x)min=.考点: 函数奇偶性的判断;函数的最值及其几何意义.
分析: 本题第一问考查分段函数的奇偶性,用定义判断;第二问是求最值的题目:求最值时,先判断函数在相应定义域上的单调性,在根据单调性求出函数的最值.解答: 解:(1)f(x)=若f(x)奇函数,则f(﹣x)=﹣f(x)所以f(0)=﹣f(0),即f(0)=0.∵f(0)=1≠0,∴f(x)不是R上的奇函数.又∵f(1)=1,f(﹣1)=3,f(1)≠f(﹣1),∴f(x)不是偶函数.故f(x)是非奇非偶的函数.(2)当x≥2时,f(x)=x2+x﹣3,为二次函数,对称轴为直线x=,则f(x)为[2,+∞)上的增函数,此时f(x)min=f(2)=3.当x<2时,f(x)=x2﹣x+1,为二次函数,对称轴为直线x=则f(x)在(﹣∞,)上为减函数,在[,2)上为增函数,此时f(x)min=f()=.综上,f(x)min=.点评: 函数的奇偶性是高考常考的题目,而出的题目一般比较简单,常用定义法判断;函数的最值也是函数问题中常考的题目,一般先判断函数的单调性,在求最值,而学生往往忽略了判断单调性这一步21.(本小题满分12分)求满足下列条件的直线的方程:(1)经过点A(3,2),且与直线4x+y-2=0平行;(2)经过点B(2,-3),且平行于过点M(1,2)和N(-1,-5)的直线;(3)经过点C(3,0),且与直线2x+y-5=0垂直.参考答案:解:(1)由直线4x+y-2=0得直线的斜率为-4,
(2分)所以经过点A(3,2),且与直线4x+y-2=0平行的直线方程为y-2=-4(x-3),即4x+y-14=0.
(4分)(2)由已知,经过两点M(1,2)和N(-1,-5)的直线的斜率,
(6分)所以,经过点B(2,-3),且平行于MN的直线方程为,即7x-2y-20=0.
(8分)(3)由直线2x+y-5=0得直线的斜率为-2,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论