版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年辽宁省沈阳市东北中心中学高二数学文下学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.=(
)A.
B.
C.
D.参考答案:C2.已知命题p:?x0∈R,(m+1)·(x+1)≤0,命题q:?x∈R,x2+mx+1>0恒成立.若p∧q为假命题,则实数m的取值范围为()A.m≥2
B.m≤-2或m>-1C.m≤-2或m≥2
D.-1<m≤2参考答案:B略3.已知为等差数列,,以表示的前n项和,则使达到最大值n是(
)A.18
B.19
C.20
D.21参考答案:C4.设过抛物线的焦点的弦为AB,则|AB|的最小值为()A.
B.
C.2
D.无法确定参考答案:C5.若圆C:x2+y2-4x-4y-10=0上至少有三个不同的点到直线l:x-y+c=0的距离为2,则c的取值范围是(
)A.[-2,2] B.(-2,2)
C.[-2,2]
D.(-2,2)参考答案:A6.执行如图所示的程序框图,输出的值为(
)A.
B.
C.
D.
参考答案:D7.不等式﹣x2﹣2x+3≤0的解集为()A.{x|x≥3或x≤﹣1} B.{x|﹣1≤x≤3} C.{x|﹣3≤x≤1} D.{x|x≤﹣3或x≥1}参考答案:D【考点】一元二次不等式的解法.【专题】计算题.【分析】在不等式两边同时除以﹣1,不等式方向改变,再把不等式左边分解因式化为x﹣1与x+3的乘积,根据两数相乘同号得正可得x﹣1与x+3同号,化为两个不等式组,分别求出不等式组的解集即可得到原不等式的解集.【解答】解:不等式﹣x2﹣2x+3≤0,变形为:x2+2x﹣3≥0,因式分解得:(x﹣1)(x+3)≥0,可化为:或,解得:x≤﹣3或x≥1,则原不等式的解集为{x|x≤﹣3或x≥1}.故选D.【点评】此题考查了一元二次不等式的解法,利用了转化的数学思想,是高考中常考的基本题型.其中转化的理论依据是根据两数相乘同号得正、异号得负的取符号法则.8.某产品的广告费用与销售额的统计数据如下表:广告费用(万元)42
3
5销售额(万元)
49
26
39
54
根据以上表可得回归方程中的为据此模型预报广告费用为万元时销售额为(
)A.63.6万元
B.
65.5万元
C.67.7万元
D.72.0万元参考答案:B9.已知椭圆C:的离心率为.双曲线的渐近线与椭圆C有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C的方程为(
)A.
B.
C.
D.参考答案:D10.“是假命题”是“为真命题”的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.已知函数,其中a为常数,若函数存在最小值的充要条件是。(1)集合A=
;(2)若当时,函数的最小值为,则
。参考答案:[-1,1],。12.抛物线的焦点坐标为_________,参考答案:(0,-)13.命题“如果,那么且”的逆否命题是______.参考答案:如果或,则【分析】由四种命题之间的关系,即可写出结果.【详解】命题“如果,那么且”的逆否命题是“如果或,则”.故答案为:如果或,则【点睛】本题主要考查四种命题之间的关系,熟记概念即可,属于基础题型.14.若x,y满足约束条件,则z=2x+y的最大值为.参考答案:【考点】简单线性规划.【分析】作出可行域,由目标函数变型得y=﹣2x+z,根据可行域找出最优解即可.【解答】解:作出约束条件表示的可行域如图所示:由目标函数z=2x+y得y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点B时,截距最大,即z最大.解方程组得x=1,y=,即B(1,).∴z的最大值为2×1+=.故答案为:.15.如果直线互相垂直,那么a的值等于
.
参考答案:略16.已知,且,若恒成立,则实数的取值范围是
参考答案:17.设a=,b=-,c=-,则a,b,c的大小关系为________.参考答案:a>c>b略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知焦点在x轴上的椭圆+=1(b>0),F1,F2是它的两个焦点,若椭圆上的点到焦点距离的最大值与最小值的差为2.(1)求椭圆的标准方程;(2)经过右焦点F2的直线l与椭圆相交于A、B两点,且+2=0,求直线l的方程.参考答案:【考点】椭圆的简单性质.【专题】方程思想;转化思想;圆锥曲线的定义、性质与方程.【分析】(1)由椭圆上的点到焦点距离的最大值与最小值的差为2,可得(a+c)﹣(a﹣c)=2,解得c.进而得出b2=a2﹣c2.(2)设直线l的方程为my=x﹣1.A(x1,y1),B(x2,y2).与椭圆方程联立化为(3m2+4)y2+6my﹣9=0.由+2=0,可得y1+2y2=0,与根与系数的关系联立解出即可.【解答】解:(1)∵椭圆上的点到焦点距离的最大值与最小值的差为2,∴(a+c)﹣(a﹣c)=2,解得c=1.∴b2=a2﹣c2=4﹣1=3.∴椭圆的标准方程为=1.(2)设直线l的方程为my=x﹣1.A(x1,y1),B(x2,y2).联立,化为(3m2+4)y2+6my﹣9=0.∴y1+y2=﹣,y1y2=.(*)∵+2=0,∴y1+2y2=0,与(*)联立可得:y2=,y1=,∴×=,化为m2=,解得m=.∴直线l的方程为:y=±(x﹣1).【点评】本题考查了椭圆的标准方程及其性质、“直线与椭圆相交问题、向量坐标运算性质,考查了推理能力与计算能力,属于中档题.19.求下列函数的导数:(I);(II).参考答案:(Ⅰ)-------------------------------4分(Ⅱ)----------------------------8分
略20.某赛季甲乙两名篮球运动员每场比赛得分的原始记录如下:甲运动员得分:30,27,9,14,33,25,21,12,36,23,乙运动员得分:49,24,12,31,50,31,44,36,15,37,25,36,39(1)根据两组数据完成甲乙运动员得分的茎叶图,并通过茎叶图比较两名运动员成绩的平均值及稳定程度;(不要求计算出具体数值,给出结论即可)(2)若从甲运动员的十次比赛的得分中选出2个得分,记选出的得分超过23分的个数为ξ,求ξ的分布列和数学期望.参考答案:【考点】离散型随机变量的期望与方差;茎叶图;离散型随机变量及其分布列.【分析】(Ⅰ)由某赛季甲乙两名篮球运动员每场比赛得分的原始记录作出茎叶图,由茎叶图得,乙的平均值大于甲的平均数,甲比乙稳定.(Ⅱ)根据题意ξ的所有可能取值为0,1,2,分别求出相应的概率,由此能求出ξ的分布列和数学期望.【解答】解:(Ⅰ)由某赛季甲乙两名篮球运动员每场比赛得分的原始记录作出茎叶图:由茎叶图得,乙的平均值大于甲的平均数,甲比乙稳定.…(Ⅱ)根据题意ξ的所有可能取值为0,1,2,则,,,所以ξ的分布列为ξ012P(ξ)E(ξ)==1…21.(12分)已知数列的前和为,其中且(1)求;(2)猜想数列的通项公式,并用数学归纳法加以证明。参考答案:解:(1)a=
且a=
S=n(2n-1)a当n=2时,+
,当n=3时,,(2)猜想:
证明:i)当n=1时,成立
ii)假设当n=k()时,成立,
那么当n=k+1时,S=(k+1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度电梯安全知识竞赛组织与实施合同3篇
- 二零二五版矿山劳务合同范本:矿山安全生产监督协议3篇
- 基于2025年度财务软件系统的定制开发合同3篇
- 2025年度临时安保服务劳务合同实施细则4篇
- 2025年度光伏电站变压器供货与安装服务合同3篇
- 2025年度环保节能照明设备研发与推广合同3篇
- 2024-2025学年高中语文第一课走进汉语的世界3四方异声-普通话和方言练习含解析新人教版选修语言文字应用
- 2025年度水路货物运输货物保险理赔代理合同(GF定制版)
- 2025年校园食堂食品安全追溯原料采购管理服务合同3篇
- 二零二四年在建工业地产转让合同范本3篇
- 英语名著阅读老人与海教学课件(the-old-man-and-the-sea-)
- 学校食品安全知识培训课件
- 全国医学博士英语统一考试词汇表(10000词全) - 打印版
- 最新《会计职业道德》课件
- DB64∕T 1776-2021 水土保持生态监测站点建设与监测技术规范
- 中医院医院等级复评实施方案
- 数学-九宫数独100题(附答案)
- 理正深基坑之钢板桩受力计算
- 学校年级组管理经验
- 10KV高压环网柜(交接)试验
- 未来水电工程建设抽水蓄能电站BIM项目解决方案
评论
0/150
提交评论