版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
|
www.
/usaid-partnership
USAIDGRID-SCALEENERGYSTORAGETECHNOLOGIESPRIMER
USAIDGRID-SCALEENERGYSTORAGETECHNOLOGIESPRIMER
Authors
ThomasBowen,IlyaChernyakhovskiy,KaifengXu,SikaGadzanku,KamyriaConey
NationalRenewableEnergyLaboratory
July2021
Acompanionreporttothe
USAIDEnergyStorageDecisionGuideforPolicymakers
Preparedby
NOTICE
Thisworkwasauthored,inpart,bytheNationalRenewableEnergyLaboratory(NREL),operatedbyAllianceforSustainableEnergy,LLC,fortheU.S.DepartmentofEnergy(DOE)underContractNo.DE-AC36-08GO28308.
FundingprovidedbytheUnitedStatesAgencyforInternationalDevelopment(USAID)underContractNo.IAG-17-2050.TheviewsexpressedinthisreportdonotnecessarilyrepresenttheviewsoftheDOEortheU.S.Government,oranyagencythereof,includingUSAID.
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at
/publications.
U.S.DepartmentofEnergy(DOE)reportsproducedafter1991andagrowingnumberofpre-1991documentsareavailablefreevia
www.OSTI.gov.
Frontcover:photofromiStock506609532;Backcover:photofromiStock506611252
NRELprintsonpaperthatcontainsrecycledcontent.
PAGE\*roman
viii
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at
/publications.
Acknowledgments
Theauthorsaregreatlyindebtedtoseveralindividualsfortheirsupportandguidance.WewishtothankDominiqueBain,MarcusBianchi,NateBlair,AnthonyBurrell,PaulDenholm,GregStark,andKeithWipkeattheNationalRenewableEnergyLaboratory(NREL),andOliverSchmidtatImperialCollegeLondonfortheirreviews.AndwewishtothankIsabelMcCan,ChristopherSchwing,andLizBreazealeforcommunications,design,andeditingsupport.Anyerrorsoromissionsaresolelytheresponsibilityoftheauthors.
ThisworkwasfundedbyUSAID.
ListofAcronyms
A-CAES adiabaticcompressedairenergystorage
CAES compressedairenergystorage
CHP combinedheatandpower
CSP concentratedsolarpower
D-CAES diabaticcompressedairenergystorage
FESS flywheelenergystoragesystems
GES gravityenergystorage
GMP GreenMountainPower
LAES liquidairenergystorage
LADWP LosAngelesDepartmentofWaterandPower
PCM phasechangematerial
PSH pumpedstoragehydropower
R&D researchanddevelopment
RFB redoxflowbattery
SMES superconductingmagneticenergystorage
TES thermalenergystorage
VRE variablerenewableenergy
TableofContents
TOC\o"1-2"\h\z\u
Introduction 1
ElectrochemicalEnergyStorageTechnologies 6
Lithium-ionBatteryEnergyStorage 8
FlowBatteryEnergyStorage 12
Lead-AcidBatteryEnergyStorage 14
Sodium-SulfurBattery 16
MechanicalEnergyStorageTechnologies 18
PumpedStorageHydropower(PSH) 19
FlywheelEnergyStorage 21
CompressedAirEnergyStorage 23
GravityEnergyStorage 26
AdditionalEnergyStorageTechnologies 28
HydrogenEnergyStorageSystems 29
ThermalEnergyStorage(TES) 34
Supercapacitors 36
SuperconductingMagneticEnergyStorage(SMES) 37
Glossary 39
References 40
ListofFigures
Figure1.Ecosystemofenergystoragetechnologiesandservices 2
Figure2.U.S.annualnewinstallationsofelectrochemicalenergystoragebychemistry 8
Figure3:Lithium-ionbatterychemistrymarketshareforecast,2015–2030 10
Figure4.Pathwaysinthehydrogeneconomyfromfeedstocktoendapplication 32
ListofTables
Table1.QualitativeComparisonofEnergyStorageTechnologies 3
Table2.ComparisonofElectrochemicalStorageTechnologies 6
Table3.AdvantagesandDisadvantagesofSelectElectrochemicalBatteryChemistries 7
Table4.OperatingCharacteristicsofSelectLithium-IonChemistries 9
Table5.ComparisonofMechanicalStorageTechnologies 18
Table6.TypicalCharacteristicsofSelectFlywheelTechnologies 21
Table7.MethodsforProducingHydrogen 31
PAGE
1
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at
/publications.
Introduction
Powersystemsworldwideareexperiencinghigherlevelsofvariablerenewableenergy(VRE)aswindandsolarpowerplantsconnecttothegrid.ThistrendisexpectedtocontinueascostsforVREresourcesdeclineandjurisdictionspursuemoreambitiouspowersectortransformationstrategieswithincreasedVREpenetrations.
1
HigherpenetrationsofVREcandriveadditionalneedforpowersystemflexibilityinbothshort-termessentialgridservicesandlonger-termenergyshiftingandpeakingcapacityservices(Chernyakhovskiyetal.2019).Energystorageisoneofseveralsourcesofpowersystemflexibilitythathasgainedtheattentionofpowerutilities,regulators,policymakers,andthemedia.
2
Fallingcostsofstoragetechnologies,particularlylithium-ionbatteryenergystorage,andimprovedperformanceandsafetycharacteristicshavemadeenergystorageacompellingandincreasinglycost-effectivealternativetoconventionalflexibilityoptionssuchasretrofittingthermalpowerplantsortransmissionnetworkupgrades.
Thisprimerisintendedtoprovideregulatorsandpolicymakerswithanoverviewofcurrentandemergingenergystoragetechnologiesforgrid-scaleelectricitysectorapplications.Transportationsectorandotherenergystorageapplications(e.g.,mini-andmicro-grids,electricvehicles,distributionnetworkapplications)arenotcoveredinthisprimer;however,theauthorsdorecognizethatthesesectorsstronglyinteractwithoneanother,influencingthecostsofenergystorageasmanufacturingcapacityscalesupaswellasimpactingelectricitydemand.Thestoragetechnologiescoveredinthisprimerrangefromwell-establishedandcommercializedtechnologiessuchaspumpedstoragehydropower(PSH)andlithium-ionbatteryenergystoragetomorenoveltechnologiesunderresearchanddevelopment(R&D).Thesetechnologiesvaryconsiderablyintheiroperationalcharacteristicsandtechnologymaturity,whichwillhaveanimportantimpactontherolestheyplayinthegrid.Figure1providesanoverviewofenergystoragetechnologiesandtheservicestheycanprovidetothepowersystem.
SeveralkeyoperationalcharacteristicsandadditionaltermsforunderstandingenergystoragetechnologiesandtheirroleonthepowersystemaredefinedintheGlossary.
Table1
providesseveralhigh-levelcomparisonsbetweenthesetechnologies.ManyofthesecharacteristicsareexpectedtochangeasR&Dforthetechnologiesprogresses.Sometechnologycategories,suchaslithium-ionorlead-acidbatteries,comprisemultiplesubtypesthateachfeatureuniqueoperationalcharacteristics;comparisonsofsubtypeswithintechnologiesareconsideredintheirrespectivesections.
Thisreportservesasacompanionpiecetothe
USAIDEnergyStorageDecisionGuideforPolicymakers,
whichoutlinesimportantconsiderationsforpolicymakersandelectricsectorregulatorswhencomparingenergystorageagainstothermeansforpowersystemobjectives.
1Bypowersectortransformation,theauthorsreferto“aprocessofcreatingpolicy,marketandregulatoryenvironments,andestablishingoperationalandplanningpracticesthataccelerateinvestment,innovationandtheuseofsmart,efficient,resilientandenvironmentallysoundtechnologyoptions”(IEA2019).Formoreinformationonsuchpowersectortransformations,seeCoxetal.(2020).
2Powersystemflexibilityisdefinedhereas“theabilityofapowersystemtoreliablyandcost-effectivelymanagethevariabilityanduncertaintyofdemandandsupplyacrossallrelevanttimescales,fromensuringinstantaneousstabilityofthepowersystemtosupportinglong-termsecurityofsupply”(IEA2018).Forinformationonandsourcesofpowersystemflexibility,seeIEA(2018)andIEA(2019).
Figure1.Ecosystemofenergystoragetechnologiesandservices
Table1.QualitativeComparisonofEnergyStorageTechnologies
Source:(Chenetal.2009;Mongirdetal.2019a;Mongirdetal.2020)
Category
Technology
DevelopmentStageforUtility-ScaleGridApplications
CostRange
TypicalDurationofDischargeatMaxPowerCapacity
ReactionTime
Round-TripEfficiency
3
Lifetime
Electro-ChemicalBatteries
Lithium-ion
Widelycommercialized
1,408-1,947
($/kW)
352-487($/kWh)†
Minutestoafewhours
Subsecondtoseconds
86-88%
10years
Flow
Initialcommercialization
1,995-2,438
($/kW)
499-609($/kWh)†
Severalhours
Subsecondtoseconds
65%–70%
15years
Lead-acid
Widelycommercialized
1,520-1,792
($/kW)
380-448($/kWh)†
Minutestoafewhours
Seconds
79-85%
12years
Sodium-sulfur
Initialcommercialization
2,394–5,170
($/kW)
599–1,293
($/kWh)††
Severalhours
Subsecond
77%–83%
15years
Mechanical
PSH
Widelycommercialized
1,504-2,422
($/kW)
150-242
($/kWh)†††
Severalhourstodays
SeveralSecondstoMinutes(dependsontechnologychoice)
80+%*
40years
Compressedairenergystorage(CAES)
Initialcommercialization
973-1,259($/kW)
97-126($/kWh)†††
Severalhourstodays
SeveralMinutes
52%**
30years
Flywheels
Widelycommercialized
1,080-2,880
($/kW)
4,320-11,520
($/kWh)††
Secondstoafewminutes
Subsecond
86%–96%
20years
Gravity
R&Dstage
Insufficientdata
Severalhours
SeveralMinutes
Insufficientdata
Insufficientdata
Chemical
Hydrogenproductionandfuelcells
Pilotstage
2,793-3,488
($/kW)279-349
($/kWh)††††
Severalhourstomonths
Subsecond
35%
30years
Thermal
Thermalenergystorage
Initialcommercialization
1,700-1,800
($/kW)
20-60($/kWh)
Severalhours
SeveralMinutes
90+%
30years
3Assomeenergystoragetechnologiesrelyonconvertingenergyfromelectricityintoanothermedium,suchasheatinthermalenergystoragesystemsorchemicalenergyinhydrogen,weuseefficiencyheretorefertotheround-tripefficiencyofstoringandreleasingelectricity(electrons-to-electrons),asopposedtotheefficiencyofusingelectricitytoproduceheatforheatingneedsorhydrogenfortransportationfuelneeds.
Electrical
Super-capacitors
R&DStage
930($/kW)
74,480($/kWh)††
Secondstoafewminutes
Subsecond
92%
10–15
years
Superconductingmagneticenergystorage(SMES)
Initialcommercialization
200–300($/kW)
1,000–10,000
($/kWh)
Seconds
Subsecond
~97%
20years
*:ThisreferstonewerPSHinstallationsandolderPSHsystemsmayhaveefficienciesclosertothe60-75%range.
**:AsCAESreliesonbothelectricitytocompressairandafuel(typicallynaturalgas)toexpandtheair,itsefficiencycannotbereadilycomparedtootherstoragetechnologies.Thevalueusedinthisreportrepresentstheratiooftheoutputofelectricalenergytothecombinedinputofelectricalenergyforthecompressorandthenaturalgasinputforexpansion,usingtheheatingvalueofnaturalgastoconvertitsenergytohowmuchelectricityitcouldhaveproduced(Mongirdetal.2019).
†Thisrangereferstoa10MW4-hourbatteryin2020costs.Forlithium-ion,thisreferstotheNMCchemistry(seeSection
2.1
foradditionalinformationonlithium-ionchemistries).SeeMongirdet.al.(2020)foradditionalenergystoragesizesanddurationsandestimatesforfutureyears.
††:Thisrangerefersto2018costs.SeeMongirdet.al.(2019)forfutureyears.
†††Thisrangerefersto1000MW10-hoursystems.SeeMongirdet.al.(2020)foradditionalenergystoragesizesanddurationsandestimatesforfutureyears.
††††Thisrangerefersto100MW10-hoursystems.SeeMongirdet.al.(2020)foradditionalenergystoragesizesanddurationsandestimatesforfutureyears.
|
www.
/usaid-partnership
USAIDGRID-SCALEENERGYSTORAGE
TECHNOLOGIESPRIMER
ElectrochemicalEnergyStorageTechnologies
PAGE
10
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at
/publications.
ElectrochemicalEnergyStorageTechnologies
Electrochemicalstoragesystemsuseaseriesofreversiblechemicalreactionstostoreelectricityintheformofchemicalenergy.Batteriesarethemostcommonformofelectrochemicalstorageandhavebeendeployedinpowersystemsinbothfront-of-the-meterandbehind-the-meterapplications,aswellasinelectronicsandtransportationapplications.Broadlyspeaking,batteriestendtohavedurationslastinguptoseveralhoursandcanchangeoutputinthesubsecondtoseveralminutesrange.
Table2.ComparisonofElectrochemicalStorageTechnologies
Source:(Fanetal.2020;DNVGL2016;Kintner-Meyeretal.2010;DiazdelaRubiaetal.2015;Mongirdetal.
2020)
Technology
ReactionTime
Round-TripEfficiency
EnergyDensity(Wh/kg)
PowerDensity(W/kg)
OperatingTemperature(°C)
CycleLife(Cycles)**
Lithium-Ion
Subsecondtoseconds
86-88%
210–325*
4,000–
6,500*
-20–65
1,000–2,000*
Flow
Subsecond
65%–70%
10–50
0.5–2
5–45
12,000–14,000
Lead-Acid
Seconds
79-85%%
30–50
30-50
18–45
500–1,000
Sodium-Sulfur
Subsecond
77%–83%
150–240
120–160
300–350
~4,500
*Valuesmayvaryacrossdifferentcelldesigns,chemistries,andpowerelectronicsconfigurations.Foroperationalcharacteristicsbrokendownintocommonlithium-ionchemistries,see
Table5.
**Itshouldbenotedthatcyclelifeisintrinsicallyrelatedtothebehaviorandenvironmentofthestoragesystem(e.g.,someusecasescanleadtolowercyclelifeasitstressesthestoragesystem,andmanyelectrochemicalstoragetechnologiesperformworseorsuffershortercyclelifeoutsidetheirnormaloperatingtemperaturerange).
Table3.AdvantagesandDisadvantagesofSelectElectrochemicalBatteryChemistries
Adaptedfrom(Fanetal.2020)
StorageType
Advantages
Disadvantages
Lithium-Ion
Relativelyhighenergyandpowerdensity
Lowermaintenancecosts
Rapidchargecapability
Manychemistriesofferdesignflexibility
Establishedtechnologywithstrongpotentialforprojectbankability.
Highupfrontcost($/kWh)relativetolead-acid(potentiallyoffsetbylongerlifetimes)
Poorhigh-temperatureperformance
Safetyconsiderations,whichcanincreasecoststomitigate
Currentlycomplextorecycle
Relianceonscarcematerials.
Flow(Vanadium-Redox)
Longcyclelife
Highintrinsicsafety
Capableofdeepdischarges.
Relativelylowenergyandpowerdensity.
Lead-Acid
Lowcost
Manydifferentavailablesizesanddesigns
Highrecyclability.
Limitedenergydensity
Relativelyshortcyclelife
Cannotbekeptinadischargedstateforlongwithoutpermanentimpactonperformance
Deepcyclingcanimpactcyclelife
Poorperformanceinhightemperatureenvironments.
Toxicityofcomponents
Sodium-Sulfur
Relativelyhighenergydensity
Relativelylongcyclelife
Lowself-discharge.
Highoperatingtemperaturenecessary
Highcosts.
Lithium-ionBatteryEnergyStorage
TechnologySummaryforPolicymakers
Lithium-ionisamatureenergystoragetechnologywithestablishedglobalmanufacturingcapacitydriveninpartbyitsuseinelectricvehicleapplications.Theoverlapbetweenthetransportationandpowersystemsectorshaveenabledsteeppricedeclinesintechnologycostsforlithium-ionbatteries,drivinghigherdeployments.Inutility-scalepowersectorapplications,lithium-ionhasbeenusedpredominantlyforshort-duration,high-cyclingservicessuchasfrequencyregulation,althoughitisincreasinglyusedtoprovidepeakingcapacityandenergyarbitrageservicesincertainjurisdictions.Lithium-ionhasatypicaldurationinthe2-to4-hourrange,withpricecompetitivenessdecreasingatlongerdurations.Onemajortechnicalissuewithlithium-ionisfiresafety,asthechemistrycansufferthermalrunawayleadingtofireconcerns.Recentbatterypacktechnologyandsoftwareinnovationsareaddressingsafetyconcernsrelatedtothermalrunaway.
Lithium-ionbatterystoragecurrentlydominatesthelandscapefornew,utility-scaleinstallationsforelectrochemicalstationarystorageapplicationsandisonlysurpassedbypumpedhydrostorageforcumulativecapacity.Since2010intheUnitedStates,over90%ofannualadditionsofutility-scalestationarybatterystorageinthepowersectorhasbeenlithium-ion(
Figure2
).Thistrendisdrivenbyseveralfactors,includingrobustmanufacturingcapabilities,well-developedsupplychains,increasingdemandinthetransportationsector,andaprecipitousdropinlithium-ionbatterypackpricesoverthepastseveralyears:lithium-ionbatterypackpricesdeclined89%from2010to2020(Frith2020).
4
Figure2.U.S.annualnewinstallationsofelectrochemicalenergystoragebychemistry
Source:(EIA2019)
Aswithallbatteryenergystoragetechnologies,lithium-ionbatteriesconvertchemicalenergycontainedinitsactivematerialsdirectlyintoelectricalenergythroughanelectrochemicaloxidation-reductionreaction(Warner2015).Lithium-ionbatteries,however,havesignificantlyhigherenergydensitiesrelativetootherelectrochemicalstoragetechnologiessuchaslead-acidandflowbatteries,whichallows
4Notethatthispricedeclinerefersonlytobatterypackprices,whichreflectlithium-ionbatterypackhardwarecostsanddonotincludeadditionalhardwarecomponentsorsoftcoststhatwouldaccumulatewhenconstructingaproject.
thesameenergyneedstobemetwithsmallerandlighterbatteries.Lithium-ionbatteriesarealsoabletochargeanddischargethousandsoftimesbeforereachingtheendofthebatterypacklife.
Theprimarysafetyconcernsurroundinglithium-ionbatteriesisfire-riskscausedby“thermalrunaway.”Thermalrunawayreferstoapointatwhichthetemperatureinsidethebatterycellsbecomeshotenoughtocauseself-sustainingheatgeneration,whichcanquicklyleadtobatteryfailureorevenfires(Warner2015).Eventhoughthermalrunawayisnotuniquetolithium-ion,lithiumtendstohavealowerrunawaytemperature,whichmeansthermalmanagementandfiresuppressionareimportantfactorstoconsiderwhenoperatinglithium-ionbatteries,eventhoughtheymayincreaseoverallprojectcosts.
5
Lithium-ionbatteriescanconsistofvariouschemistryconfigurationsandeachchemistryexhibitsslightlydifferentoperatingparameters.
Table4
comparesthekeyoperatingmetricsforafewofthecommonlithium-ionchemistries(Warner2015).AlthoughLithiumNickelManganeseCobalt(NMC)iscurrentlythedominatechemistry,competingchemistriesLithiumNickelCobaltAluminum(NCA)andLithiumIronPhosphate(LFP)areexpectedtogrowinpopularityoverthenextseveraldecades(
Figure3
).
Table4.OperatingCharacteristicsofSelectLithium-IonChemistries
Source:(Warner2019;DNVGL2016;Mongirdetal.2020)
Technology
EnergyDensity(Wh/L)
PowerDensity(W/L)
OperatingTemperature(°C)
CycleLife
Self-Discharge(%/month)
LithiumIronPhosphate
220–250
4,500
-20to+60
~2,000
<1%
LithiumNickelCobaltAluminum
210–600
4,000–
5,000
-20to+60
>1,000
2%–10%
LithiumNickelManganeseCobalt
325
6,500
-20to+55
~1,200
1%
5Batterycelldegradationthatcanleadtothermalrunawaycanbeginattemperaturesaslowas80°C.At80°C,lithiumionsbegintoreactwithchemicalsintheelectrolyte,decomposinglayersaroundtheanodeinaheat-generatingreaction(exothermic)(Warner2019).
Figure3:Lithium-ionbatterychemistrymarketshareforecast,2015–2030
Source:(WoodMackenzie2020)
CurrentApplications
Inadditiontowidespreadelectricmobilityapplicationsandconsumerelectronics,lithium-ionbatterystorageisincreasinglyusedforstationaryenergystorageapplications,bothinutility-scaleandbehind-the-meterapplications.Lithium-ion’squickresponsetime,longcyclelife,andlimiteddurationlenditselfwelltoshorter-termapplicationsthatmayrequirefrequentanddeepcycling.
6
Currently,lithium-ionisusedinfrequencyresponseandotheressentialgridreliabilityservicesthathelpsystemoperatorsmaintainbalancebetweenloadanddemandatshorttimescales(uptoafewhours)(Bowenetal.2019).Lithium-ionbatterieshavealsoseendeploymentforprovidingpeakingcapacity,chargingduringtimesofenergysurplus,anddischargingduringtimesofhigherdemandtohelputilitiesmeetpeakdemand.Duetoitslimitedduration,lithium-ion’scontributiontosystempeakdemandstronglydependsontheshapeofthedemandcurve(DenholmandMargolis2018).Similarly,lithium-ioncanalsobeusedtoreducegridcongestionanddefertransmissionanddistributionsystemupgradesbystoringenergyduringtimesofexcessgenerationandmeetingloadlocallyduringtimesofhighdemand.
EmergingApplicationsandR&DEfforts
Futureimprovementsinlithium-ionbatteriesareprimarilyfocusedonincreasingenergydensity,increasingthepoweroutputoflithium-ioncells,makingthebatteriessafertooperate,reducingoverallcosts,andreducingrelianceonscarceminerals.Twonovelconfigurationscurrentlybeingexploredare
6“Deep”and“shallow”cyclingareusedtoqualitativelyrefertothedepthofdischargeanenergystoragesystemexperiencesduringoperation.Thedepthofdischargereferstotheshareofthestoragesystem’scapacitythathasbeendischargedandisinverselyrelatedtoitsstateofcharge.Althoughthereisnosetdefinition,deepcyclingmayrefertooperationswhenthestoragesystemdischargesthemajorityofitsstoredenergy(suchaswhileprovidingprolongedpeakingcapacity)whereasshallowcyclingreferstooperationswhenthestoragesystemalternatesbetweencharginganddischargingsuchthatitsstateofchargeremainsrelativelyhigh(suchasprovidingfrequencyregulation).Thedepthofdischargecanhavesignificanteffectsonthelifetimeofthestoragesystem,andtechnologiesvaryintheirsensitivitytothedepthofdischargetheyexperience.
solid-statelithium-ionbatteries,whichusesolidelectrolytesandhaveimprovedenergydensitiesandlowersafetyriskscomparedtoliquid-electrolytelithium-ionbatteries,andlithium-airbatteries,whichhaveimprovedenergydensitiesandhavethepotentialtobeverylowcostandcouldreducerelianceonscarceminerals(Warner2019).
ExampleDeployment
Lithium-ionhasseenextensiveglobaldeploymentintheenergysector.OneprominentexistingprojectistheHornsdalePowerReserve,a100-MW/129-MWhlithium-ionbatteryinSouthAustraliacompletedin2017forfrequencyregulationandtransmissioncongestionrelief.TheSouthAustraliapowersystemisrelativelyisolatedandcandisconnectfromthelargerAustralianpowersystemifthepointofinterconnectionisoverloaded.Oneofthebattery’sadditionalfunctionsistoprovideinjectionsofpowertopreventtheinterconnectionfromdisconnecting.Onatleasttwooccasions,duringeventswhenlargecoalplantstrippedoffline,theHornsdalePowerReserverespondedwithinmillisecondstoimmediatelyinjectlargeamountsofpowerintothegridoverafewminutestosupportthegridfrequencyuntilotherpowerplantscouldincreasetheiroutput,arrestingthefallinfrequencyandpotentiallyavoidingpowerreliabilityissuesanddisconnectionfromthelargergrid(AEMO2018).
In2018,theelectriccooperative,UnitedPower,completedtheinstallationofa4-MW/16-MWh(4-hourduration)lithium-ionbatteryinFirestone,Colorado.Thecooperativeaimstostoreexcessenergyovernightwhendemandislowanduseittomeetpeakdemandduringtheday,reducingoperatingcostsfortheutility.Thelocalutilityexpectstobeabletosave$1millionperyearinavoidedwholesalecapacitycharges(UnitedPower2018).
FlowBatteryEnergyStorage
TechnologySummaryforPolicymakers
Flowbatteriesareintheinitialstagesofcommercialization.Thetechnologyismarkedbylongdurations,theabilitytodeeplydischargeitsstoredenergywithoutdamagingthestoragesystem,andexceedinglylonglifecycles.Flowbatteriesmaybeuniquelysituatedforlongerdurationservicessuchasloadfollowingorpeakingcapacity.Whileflowbatterieshavehigherupfrontcoststhanlithium-ion,theirlongerlifecyclecanleadtosignificantlylowerlifetimecosts.Flowbatteriesarealsotypicallysaferandarelessreliantonrarematerials,dependingonthespecificchemistry.Givenflowbatteries’lowenergyandpowerdensity,thesesystemstendtobelargerthanotherequivalentstoragetechnologies.
Flowbatteryenergystorageisaformofelectrochemicalenergystoragethatconvertsthechemicalenergyinelectro-activematerials,typicallystoredinliquid-basedelectrolytesolutions,directlyintoelectricalenergy(NguyenandSavinell2010).Therearevariousformsofestablishedflowbatteryenergystoragetechnologies,includingredoxflowbatteries(RFBs)andhybridflowbatteries.RFBs,whichincludevanadiumredoxflowandpolysulphidebromideflowbatteries,havetheelectro-activematerialdissolvedinaliquidelectrolytethatisstoredexternaltothebattery.Thebatterychargesanddischargesbasedonredoxreactions,whicharechemicalreactionsbetweentwoelectrolytesolutionsatdifferentoxidationstates.Theelectrolytesaretypicallyliquid-based,separatedbyamembrane,andstoredinlargetanks.
Hybridflowbatteries,whichincludezinc-bromineandzinc-ceriumflowbatteries,haveoneoftheirelectro-activecomponentsdepositedonasolidsurface,asopposedtobeingdissolvedinaliquidelectrolyte(Alotto,Guarnieri,andMoro2014;NguyenandSavinell2010).
TheglobalflowbatterymarketisdominatedbyvanadiumRFBs,whichisthemoststudiedandcommercializedflowbatterytype(MinkeandTurek2018;Weberetal.2018).Zinc-bromine(Zn-Br)andpolysulphidebromideflowbatterieshavealsobeenwidelystudiedwithsomeinitialcommercializationbutfacetechnicalandeconomicbarriersthathavestalledtheircommercialization.Zn-Brbatteriesarerelativelylowcostandexhibithighenergydensity,highdesignflexibility,rapidcharge,andhighdepthofdischargecapabilities,butsufferfromlowcycle-life,lowenergyefficiency,anddendriteformation,whichimpactsperformance.
7
Polysulphidebromideshaverapidresponsesbutsufferfromexpensivematerialrequirements,limitedenergydensity,relativelylowefficiencies(~60%–75%),andcross-contaminationconcernsduringlong-termbatteryoperation.ThesechallengescurrentlymakeZinc-bromineandpolysulphidebromidemoreexpensiveandinefficientthanthemoreestablishedvanadiumRFBs(Fanetal.2020).
Inprinciple,flowbatterieshaveseveraladvantagesoverotherelectrochemicalstoragetechnologies.Astheactiveelectrolyticmaterialisseparatedfromthe
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年太阳能路灯技术培训与技术支持合同
- 2024年公园户外活动场地租赁合同
- 2024年分包工程合同协议
- 2024年办公室装修项目工程施工合同
- 2024年D水利枢纽工程承包合同
- 2024年城市pipeline建设合同
- 2024年优化版个人物流承包合同
- 报刊发行合同管理细则
- 2024年口罩原材料供应协议
- 2024年变电站工程设计与施工合同
- 2024年给药错误护理不良事件分析持续改进
- 电力行业网络安全
- 《北京大学介绍》课件
- 提升员工营销能力的企业教育培训
- 学院(部)国际交流与合作工作考核指标体系与评分标准
- 大学生社团对大学生的影响的社会调查报告
- 胱氨酸纯度的测定(最终版)
- 表-D完整版本.0.2-作业架施工验收记录表
- 英语48个国际音标课件(单词带声、附有声国际音标图)
- (完整文本版)货物验收单
- 广东省深圳市2023一2024学年三年级上学期科学期中核心素养提升试卷
评论
0/150
提交评论