美国国际开发署网格规模储能技术入门_第1页
美国国际开发署网格规模储能技术入门_第2页
美国国际开发署网格规模储能技术入门_第3页
美国国际开发署网格规模储能技术入门_第4页
美国国际开发署网格规模储能技术入门_第5页
已阅读5页,还剩48页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

|

www.

/usaid-partnership

USAIDGRID-SCALEENERGYSTORAGETECHNOLOGIESPRIMER

USAIDGRID-SCALEENERGYSTORAGETECHNOLOGIESPRIMER

Authors

ThomasBowen,IlyaChernyakhovskiy,KaifengXu,SikaGadzanku,KamyriaConey

NationalRenewableEnergyLaboratory

July2021

Acompanionreporttothe

USAIDEnergyStorageDecisionGuideforPolicymakers

Preparedby

NOTICE

Thisworkwasauthored,inpart,bytheNationalRenewableEnergyLaboratory(NREL),operatedbyAllianceforSustainableEnergy,LLC,fortheU.S.DepartmentofEnergy(DOE)underContractNo.DE-AC36-08GO28308.

FundingprovidedbytheUnitedStatesAgencyforInternationalDevelopment(USAID)underContractNo.IAG-17-2050.TheviewsexpressedinthisreportdonotnecessarilyrepresenttheviewsoftheDOEortheU.S.Government,oranyagencythereof,includingUSAID.

ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at

/publications.

U.S.DepartmentofEnergy(DOE)reportsproducedafter1991andagrowingnumberofpre-1991documentsareavailablefreevia

www.OSTI.gov.

Frontcover:photofromiStock506609532;Backcover:photofromiStock506611252

NRELprintsonpaperthatcontainsrecycledcontent.

PAGE\*roman

viii

ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at

/publications.

Acknowledgments

Theauthorsaregreatlyindebtedtoseveralindividualsfortheirsupportandguidance.WewishtothankDominiqueBain,MarcusBianchi,NateBlair,AnthonyBurrell,PaulDenholm,GregStark,andKeithWipkeattheNationalRenewableEnergyLaboratory(NREL),andOliverSchmidtatImperialCollegeLondonfortheirreviews.AndwewishtothankIsabelMcCan,ChristopherSchwing,andLizBreazealeforcommunications,design,andeditingsupport.Anyerrorsoromissionsaresolelytheresponsibilityoftheauthors.

ThisworkwasfundedbyUSAID.

ListofAcronyms

A-CAES adiabaticcompressedairenergystorage

CAES compressedairenergystorage

CHP combinedheatandpower

CSP concentratedsolarpower

D-CAES diabaticcompressedairenergystorage

FESS flywheelenergystoragesystems

GES gravityenergystorage

GMP GreenMountainPower

LAES liquidairenergystorage

LADWP LosAngelesDepartmentofWaterandPower

PCM phasechangematerial

PSH pumpedstoragehydropower

R&D researchanddevelopment

RFB redoxflowbattery

SMES superconductingmagneticenergystorage

TES thermalenergystorage

VRE variablerenewableenergy

TableofContents

TOC\o"1-2"\h\z\u

Introduction 1

ElectrochemicalEnergyStorageTechnologies 6

Lithium-ionBatteryEnergyStorage 8

FlowBatteryEnergyStorage 12

Lead-AcidBatteryEnergyStorage 14

Sodium-SulfurBattery 16

MechanicalEnergyStorageTechnologies 18

PumpedStorageHydropower(PSH) 19

FlywheelEnergyStorage 21

CompressedAirEnergyStorage 23

GravityEnergyStorage 26

AdditionalEnergyStorageTechnologies 28

HydrogenEnergyStorageSystems 29

ThermalEnergyStorage(TES) 34

Supercapacitors 36

SuperconductingMagneticEnergyStorage(SMES) 37

Glossary 39

References 40

ListofFigures

Figure1.Ecosystemofenergystoragetechnologiesandservices 2

Figure2.U.S.annualnewinstallationsofelectrochemicalenergystoragebychemistry 8

Figure3:Lithium-ionbatterychemistrymarketshareforecast,2015–2030 10

Figure4.Pathwaysinthehydrogeneconomyfromfeedstocktoendapplication 32

ListofTables

Table1.QualitativeComparisonofEnergyStorageTechnologies 3

Table2.ComparisonofElectrochemicalStorageTechnologies 6

Table3.AdvantagesandDisadvantagesofSelectElectrochemicalBatteryChemistries 7

Table4.OperatingCharacteristicsofSelectLithium-IonChemistries 9

Table5.ComparisonofMechanicalStorageTechnologies 18

Table6.TypicalCharacteristicsofSelectFlywheelTechnologies 21

Table7.MethodsforProducingHydrogen 31

PAGE

1

ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at

/publications.

Introduction

Powersystemsworldwideareexperiencinghigherlevelsofvariablerenewableenergy(VRE)aswindandsolarpowerplantsconnecttothegrid.ThistrendisexpectedtocontinueascostsforVREresourcesdeclineandjurisdictionspursuemoreambitiouspowersectortransformationstrategieswithincreasedVREpenetrations.

1

HigherpenetrationsofVREcandriveadditionalneedforpowersystemflexibilityinbothshort-termessentialgridservicesandlonger-termenergyshiftingandpeakingcapacityservices(Chernyakhovskiyetal.2019).Energystorageisoneofseveralsourcesofpowersystemflexibilitythathasgainedtheattentionofpowerutilities,regulators,policymakers,andthemedia.

2

Fallingcostsofstoragetechnologies,particularlylithium-ionbatteryenergystorage,andimprovedperformanceandsafetycharacteristicshavemadeenergystorageacompellingandincreasinglycost-effectivealternativetoconventionalflexibilityoptionssuchasretrofittingthermalpowerplantsortransmissionnetworkupgrades.

Thisprimerisintendedtoprovideregulatorsandpolicymakerswithanoverviewofcurrentandemergingenergystoragetechnologiesforgrid-scaleelectricitysectorapplications.Transportationsectorandotherenergystorageapplications(e.g.,mini-andmicro-grids,electricvehicles,distributionnetworkapplications)arenotcoveredinthisprimer;however,theauthorsdorecognizethatthesesectorsstronglyinteractwithoneanother,influencingthecostsofenergystorageasmanufacturingcapacityscalesupaswellasimpactingelectricitydemand.Thestoragetechnologiescoveredinthisprimerrangefromwell-establishedandcommercializedtechnologiessuchaspumpedstoragehydropower(PSH)andlithium-ionbatteryenergystoragetomorenoveltechnologiesunderresearchanddevelopment(R&D).Thesetechnologiesvaryconsiderablyintheiroperationalcharacteristicsandtechnologymaturity,whichwillhaveanimportantimpactontherolestheyplayinthegrid.Figure1providesanoverviewofenergystoragetechnologiesandtheservicestheycanprovidetothepowersystem.

SeveralkeyoperationalcharacteristicsandadditionaltermsforunderstandingenergystoragetechnologiesandtheirroleonthepowersystemaredefinedintheGlossary.

Table1

providesseveralhigh-levelcomparisonsbetweenthesetechnologies.ManyofthesecharacteristicsareexpectedtochangeasR&Dforthetechnologiesprogresses.Sometechnologycategories,suchaslithium-ionorlead-acidbatteries,comprisemultiplesubtypesthateachfeatureuniqueoperationalcharacteristics;comparisonsofsubtypeswithintechnologiesareconsideredintheirrespectivesections.

Thisreportservesasacompanionpiecetothe

USAIDEnergyStorageDecisionGuideforPolicymakers,

whichoutlinesimportantconsiderationsforpolicymakersandelectricsectorregulatorswhencomparingenergystorageagainstothermeansforpowersystemobjectives.

1Bypowersectortransformation,theauthorsreferto“aprocessofcreatingpolicy,marketandregulatoryenvironments,andestablishingoperationalandplanningpracticesthataccelerateinvestment,innovationandtheuseofsmart,efficient,resilientandenvironmentallysoundtechnologyoptions”(IEA2019).Formoreinformationonsuchpowersectortransformations,seeCoxetal.(2020).

2Powersystemflexibilityisdefinedhereas“theabilityofapowersystemtoreliablyandcost-effectivelymanagethevariabilityanduncertaintyofdemandandsupplyacrossallrelevanttimescales,fromensuringinstantaneousstabilityofthepowersystemtosupportinglong-termsecurityofsupply”(IEA2018).Forinformationonandsourcesofpowersystemflexibility,seeIEA(2018)andIEA(2019).

Figure1.Ecosystemofenergystoragetechnologiesandservices

Table1.QualitativeComparisonofEnergyStorageTechnologies

Source:(Chenetal.2009;Mongirdetal.2019a;Mongirdetal.2020)

Category

Technology

DevelopmentStageforUtility-ScaleGridApplications

CostRange

TypicalDurationofDischargeatMaxPowerCapacity

ReactionTime

Round-TripEfficiency

3

Lifetime

Electro-ChemicalBatteries

Lithium-ion

Widelycommercialized

1,408-1,947

($/kW)

352-487($/kWh)†

Minutestoafewhours

Subsecondtoseconds

86-88%

10years

Flow

Initialcommercialization

1,995-2,438

($/kW)

499-609($/kWh)†

Severalhours

Subsecondtoseconds

65%–70%

15years

Lead-acid

Widelycommercialized

1,520-1,792

($/kW)

380-448($/kWh)†

Minutestoafewhours

Seconds

79-85%

12years

Sodium-sulfur

Initialcommercialization

2,394–5,170

($/kW)

599–1,293

($/kWh)††

Severalhours

Subsecond

77%–83%

15years

Mechanical

PSH

Widelycommercialized

1,504-2,422

($/kW)

150-242

($/kWh)†††

Severalhourstodays

SeveralSecondstoMinutes(dependsontechnologychoice)

80+%*

40years

Compressedairenergystorage(CAES)

Initialcommercialization

973-1,259($/kW)

97-126($/kWh)†††

Severalhourstodays

SeveralMinutes

52%**

30years

Flywheels

Widelycommercialized

1,080-2,880

($/kW)

4,320-11,520

($/kWh)††

Secondstoafewminutes

Subsecond

86%–96%

20years

Gravity

R&Dstage

Insufficientdata

Severalhours

SeveralMinutes

Insufficientdata

Insufficientdata

Chemical

Hydrogenproductionandfuelcells

Pilotstage

2,793-3,488

($/kW)279-349

($/kWh)††††

Severalhourstomonths

Subsecond

35%

30years

Thermal

Thermalenergystorage

Initialcommercialization

1,700-1,800

($/kW)

20-60($/kWh)

Severalhours

SeveralMinutes

90+%

30years

3Assomeenergystoragetechnologiesrelyonconvertingenergyfromelectricityintoanothermedium,suchasheatinthermalenergystoragesystemsorchemicalenergyinhydrogen,weuseefficiencyheretorefertotheround-tripefficiencyofstoringandreleasingelectricity(electrons-to-electrons),asopposedtotheefficiencyofusingelectricitytoproduceheatforheatingneedsorhydrogenfortransportationfuelneeds.

Electrical

Super-capacitors

R&DStage

930($/kW)

74,480($/kWh)††

Secondstoafewminutes

Subsecond

92%

10–15

years

Superconductingmagneticenergystorage(SMES)

Initialcommercialization

200–300($/kW)

1,000–10,000

($/kWh)

Seconds

Subsecond

~97%

20years

*:ThisreferstonewerPSHinstallationsandolderPSHsystemsmayhaveefficienciesclosertothe60-75%range.

**:AsCAESreliesonbothelectricitytocompressairandafuel(typicallynaturalgas)toexpandtheair,itsefficiencycannotbereadilycomparedtootherstoragetechnologies.Thevalueusedinthisreportrepresentstheratiooftheoutputofelectricalenergytothecombinedinputofelectricalenergyforthecompressorandthenaturalgasinputforexpansion,usingtheheatingvalueofnaturalgastoconvertitsenergytohowmuchelectricityitcouldhaveproduced(Mongirdetal.2019).

†Thisrangereferstoa10MW4-hourbatteryin2020costs.Forlithium-ion,thisreferstotheNMCchemistry(seeSection

2.1

foradditionalinformationonlithium-ionchemistries).SeeMongirdet.al.(2020)foradditionalenergystoragesizesanddurationsandestimatesforfutureyears.

††:Thisrangerefersto2018costs.SeeMongirdet.al.(2019)forfutureyears.

†††Thisrangerefersto1000MW10-hoursystems.SeeMongirdet.al.(2020)foradditionalenergystoragesizesanddurationsandestimatesforfutureyears.

††††Thisrangerefersto100MW10-hoursystems.SeeMongirdet.al.(2020)foradditionalenergystoragesizesanddurationsandestimatesforfutureyears.

|

www.

/usaid-partnership

USAIDGRID-SCALEENERGYSTORAGE

TECHNOLOGIESPRIMER

ElectrochemicalEnergyStorageTechnologies

PAGE

10

ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at

/publications.

ElectrochemicalEnergyStorageTechnologies

Electrochemicalstoragesystemsuseaseriesofreversiblechemicalreactionstostoreelectricityintheformofchemicalenergy.Batteriesarethemostcommonformofelectrochemicalstorageandhavebeendeployedinpowersystemsinbothfront-of-the-meterandbehind-the-meterapplications,aswellasinelectronicsandtransportationapplications.Broadlyspeaking,batteriestendtohavedurationslastinguptoseveralhoursandcanchangeoutputinthesubsecondtoseveralminutesrange.

Table2.ComparisonofElectrochemicalStorageTechnologies

Source:(Fanetal.2020;DNVGL2016;Kintner-Meyeretal.2010;DiazdelaRubiaetal.2015;Mongirdetal.

2020)

Technology

ReactionTime

Round-TripEfficiency

EnergyDensity(Wh/kg)

PowerDensity(W/kg)

OperatingTemperature(°C)

CycleLife(Cycles)**

Lithium-Ion

Subsecondtoseconds

86-88%

210–325*

4,000–

6,500*

-20–65

1,000–2,000*

Flow

Subsecond

65%–70%

10–50

0.5–2

5–45

12,000–14,000

Lead-Acid

Seconds

79-85%%

30–50

30-50

18–45

500–1,000

Sodium-Sulfur

Subsecond

77%–83%

150–240

120–160

300–350

~4,500

*Valuesmayvaryacrossdifferentcelldesigns,chemistries,andpowerelectronicsconfigurations.Foroperationalcharacteristicsbrokendownintocommonlithium-ionchemistries,see

Table5.

**Itshouldbenotedthatcyclelifeisintrinsicallyrelatedtothebehaviorandenvironmentofthestoragesystem(e.g.,someusecasescanleadtolowercyclelifeasitstressesthestoragesystem,andmanyelectrochemicalstoragetechnologiesperformworseorsuffershortercyclelifeoutsidetheirnormaloperatingtemperaturerange).

Table3.AdvantagesandDisadvantagesofSelectElectrochemicalBatteryChemistries

Adaptedfrom(Fanetal.2020)

StorageType

Advantages

Disadvantages

Lithium-Ion

Relativelyhighenergyandpowerdensity

Lowermaintenancecosts

Rapidchargecapability

Manychemistriesofferdesignflexibility

Establishedtechnologywithstrongpotentialforprojectbankability.

Highupfrontcost($/kWh)relativetolead-acid(potentiallyoffsetbylongerlifetimes)

Poorhigh-temperatureperformance

Safetyconsiderations,whichcanincreasecoststomitigate

Currentlycomplextorecycle

Relianceonscarcematerials.

Flow(Vanadium-Redox)

Longcyclelife

Highintrinsicsafety

Capableofdeepdischarges.

Relativelylowenergyandpowerdensity.

Lead-Acid

Lowcost

Manydifferentavailablesizesanddesigns

Highrecyclability.

Limitedenergydensity

Relativelyshortcyclelife

Cannotbekeptinadischargedstateforlongwithoutpermanentimpactonperformance

Deepcyclingcanimpactcyclelife

Poorperformanceinhightemperatureenvironments.

Toxicityofcomponents

Sodium-Sulfur

Relativelyhighenergydensity

Relativelylongcyclelife

Lowself-discharge.

Highoperatingtemperaturenecessary

Highcosts.

Lithium-ionBatteryEnergyStorage

TechnologySummaryforPolicymakers

Lithium-ionisamatureenergystoragetechnologywithestablishedglobalmanufacturingcapacitydriveninpartbyitsuseinelectricvehicleapplications.Theoverlapbetweenthetransportationandpowersystemsectorshaveenabledsteeppricedeclinesintechnologycostsforlithium-ionbatteries,drivinghigherdeployments.Inutility-scalepowersectorapplications,lithium-ionhasbeenusedpredominantlyforshort-duration,high-cyclingservicessuchasfrequencyregulation,althoughitisincreasinglyusedtoprovidepeakingcapacityandenergyarbitrageservicesincertainjurisdictions.Lithium-ionhasatypicaldurationinthe2-to4-hourrange,withpricecompetitivenessdecreasingatlongerdurations.Onemajortechnicalissuewithlithium-ionisfiresafety,asthechemistrycansufferthermalrunawayleadingtofireconcerns.Recentbatterypacktechnologyandsoftwareinnovationsareaddressingsafetyconcernsrelatedtothermalrunaway.

Lithium-ionbatterystoragecurrentlydominatesthelandscapefornew,utility-scaleinstallationsforelectrochemicalstationarystorageapplicationsandisonlysurpassedbypumpedhydrostorageforcumulativecapacity.Since2010intheUnitedStates,over90%ofannualadditionsofutility-scalestationarybatterystorageinthepowersectorhasbeenlithium-ion(

Figure2

).Thistrendisdrivenbyseveralfactors,includingrobustmanufacturingcapabilities,well-developedsupplychains,increasingdemandinthetransportationsector,andaprecipitousdropinlithium-ionbatterypackpricesoverthepastseveralyears:lithium-ionbatterypackpricesdeclined89%from2010to2020(Frith2020).

4

Figure2.U.S.annualnewinstallationsofelectrochemicalenergystoragebychemistry

Source:(EIA2019)

Aswithallbatteryenergystoragetechnologies,lithium-ionbatteriesconvertchemicalenergycontainedinitsactivematerialsdirectlyintoelectricalenergythroughanelectrochemicaloxidation-reductionreaction(Warner2015).Lithium-ionbatteries,however,havesignificantlyhigherenergydensitiesrelativetootherelectrochemicalstoragetechnologiessuchaslead-acidandflowbatteries,whichallows

4Notethatthispricedeclinerefersonlytobatterypackprices,whichreflectlithium-ionbatterypackhardwarecostsanddonotincludeadditionalhardwarecomponentsorsoftcoststhatwouldaccumulatewhenconstructingaproject.

thesameenergyneedstobemetwithsmallerandlighterbatteries.Lithium-ionbatteriesarealsoabletochargeanddischargethousandsoftimesbeforereachingtheendofthebatterypacklife.

Theprimarysafetyconcernsurroundinglithium-ionbatteriesisfire-riskscausedby“thermalrunaway.”Thermalrunawayreferstoapointatwhichthetemperatureinsidethebatterycellsbecomeshotenoughtocauseself-sustainingheatgeneration,whichcanquicklyleadtobatteryfailureorevenfires(Warner2015).Eventhoughthermalrunawayisnotuniquetolithium-ion,lithiumtendstohavealowerrunawaytemperature,whichmeansthermalmanagementandfiresuppressionareimportantfactorstoconsiderwhenoperatinglithium-ionbatteries,eventhoughtheymayincreaseoverallprojectcosts.

5

Lithium-ionbatteriescanconsistofvariouschemistryconfigurationsandeachchemistryexhibitsslightlydifferentoperatingparameters.

Table4

comparesthekeyoperatingmetricsforafewofthecommonlithium-ionchemistries(Warner2015).AlthoughLithiumNickelManganeseCobalt(NMC)iscurrentlythedominatechemistry,competingchemistriesLithiumNickelCobaltAluminum(NCA)andLithiumIronPhosphate(LFP)areexpectedtogrowinpopularityoverthenextseveraldecades(

Figure3

).

Table4.OperatingCharacteristicsofSelectLithium-IonChemistries

Source:(Warner2019;DNVGL2016;Mongirdetal.2020)

Technology

EnergyDensity(Wh/L)

PowerDensity(W/L)

OperatingTemperature(°C)

CycleLife

Self-Discharge(%/month)

LithiumIronPhosphate

220–250

4,500

-20to+60

~2,000

<1%

LithiumNickelCobaltAluminum

210–600

4,000–

5,000

-20to+60

>1,000

2%–10%

LithiumNickelManganeseCobalt

325

6,500

-20to+55

~1,200

1%

5Batterycelldegradationthatcanleadtothermalrunawaycanbeginattemperaturesaslowas80°C.At80°C,lithiumionsbegintoreactwithchemicalsintheelectrolyte,decomposinglayersaroundtheanodeinaheat-generatingreaction(exothermic)(Warner2019).

Figure3:Lithium-ionbatterychemistrymarketshareforecast,2015–2030

Source:(WoodMackenzie2020)

CurrentApplications

Inadditiontowidespreadelectricmobilityapplicationsandconsumerelectronics,lithium-ionbatterystorageisincreasinglyusedforstationaryenergystorageapplications,bothinutility-scaleandbehind-the-meterapplications.Lithium-ion’squickresponsetime,longcyclelife,andlimiteddurationlenditselfwelltoshorter-termapplicationsthatmayrequirefrequentanddeepcycling.

6

Currently,lithium-ionisusedinfrequencyresponseandotheressentialgridreliabilityservicesthathelpsystemoperatorsmaintainbalancebetweenloadanddemandatshorttimescales(uptoafewhours)(Bowenetal.2019).Lithium-ionbatterieshavealsoseendeploymentforprovidingpeakingcapacity,chargingduringtimesofenergysurplus,anddischargingduringtimesofhigherdemandtohelputilitiesmeetpeakdemand.Duetoitslimitedduration,lithium-ion’scontributiontosystempeakdemandstronglydependsontheshapeofthedemandcurve(DenholmandMargolis2018).Similarly,lithium-ioncanalsobeusedtoreducegridcongestionanddefertransmissionanddistributionsystemupgradesbystoringenergyduringtimesofexcessgenerationandmeetingloadlocallyduringtimesofhighdemand.

EmergingApplicationsandR&DEfforts

Futureimprovementsinlithium-ionbatteriesareprimarilyfocusedonincreasingenergydensity,increasingthepoweroutputoflithium-ioncells,makingthebatteriessafertooperate,reducingoverallcosts,andreducingrelianceonscarceminerals.Twonovelconfigurationscurrentlybeingexploredare

6“Deep”and“shallow”cyclingareusedtoqualitativelyrefertothedepthofdischargeanenergystoragesystemexperiencesduringoperation.Thedepthofdischargereferstotheshareofthestoragesystem’scapacitythathasbeendischargedandisinverselyrelatedtoitsstateofcharge.Althoughthereisnosetdefinition,deepcyclingmayrefertooperationswhenthestoragesystemdischargesthemajorityofitsstoredenergy(suchaswhileprovidingprolongedpeakingcapacity)whereasshallowcyclingreferstooperationswhenthestoragesystemalternatesbetweencharginganddischargingsuchthatitsstateofchargeremainsrelativelyhigh(suchasprovidingfrequencyregulation).Thedepthofdischargecanhavesignificanteffectsonthelifetimeofthestoragesystem,andtechnologiesvaryintheirsensitivitytothedepthofdischargetheyexperience.

solid-statelithium-ionbatteries,whichusesolidelectrolytesandhaveimprovedenergydensitiesandlowersafetyriskscomparedtoliquid-electrolytelithium-ionbatteries,andlithium-airbatteries,whichhaveimprovedenergydensitiesandhavethepotentialtobeverylowcostandcouldreducerelianceonscarceminerals(Warner2019).

ExampleDeployment

Lithium-ionhasseenextensiveglobaldeploymentintheenergysector.OneprominentexistingprojectistheHornsdalePowerReserve,a100-MW/129-MWhlithium-ionbatteryinSouthAustraliacompletedin2017forfrequencyregulationandtransmissioncongestionrelief.TheSouthAustraliapowersystemisrelativelyisolatedandcandisconnectfromthelargerAustralianpowersystemifthepointofinterconnectionisoverloaded.Oneofthebattery’sadditionalfunctionsistoprovideinjectionsofpowertopreventtheinterconnectionfromdisconnecting.Onatleasttwooccasions,duringeventswhenlargecoalplantstrippedoffline,theHornsdalePowerReserverespondedwithinmillisecondstoimmediatelyinjectlargeamountsofpowerintothegridoverafewminutestosupportthegridfrequencyuntilotherpowerplantscouldincreasetheiroutput,arrestingthefallinfrequencyandpotentiallyavoidingpowerreliabilityissuesanddisconnectionfromthelargergrid(AEMO2018).

In2018,theelectriccooperative,UnitedPower,completedtheinstallationofa4-MW/16-MWh(4-hourduration)lithium-ionbatteryinFirestone,Colorado.Thecooperativeaimstostoreexcessenergyovernightwhendemandislowanduseittomeetpeakdemandduringtheday,reducingoperatingcostsfortheutility.Thelocalutilityexpectstobeabletosave$1millionperyearinavoidedwholesalecapacitycharges(UnitedPower2018).

FlowBatteryEnergyStorage

TechnologySummaryforPolicymakers

Flowbatteriesareintheinitialstagesofcommercialization.Thetechnologyismarkedbylongdurations,theabilitytodeeplydischargeitsstoredenergywithoutdamagingthestoragesystem,andexceedinglylonglifecycles.Flowbatteriesmaybeuniquelysituatedforlongerdurationservicessuchasloadfollowingorpeakingcapacity.Whileflowbatterieshavehigherupfrontcoststhanlithium-ion,theirlongerlifecyclecanleadtosignificantlylowerlifetimecosts.Flowbatteriesarealsotypicallysaferandarelessreliantonrarematerials,dependingonthespecificchemistry.Givenflowbatteries’lowenergyandpowerdensity,thesesystemstendtobelargerthanotherequivalentstoragetechnologies.

Flowbatteryenergystorageisaformofelectrochemicalenergystoragethatconvertsthechemicalenergyinelectro-activematerials,typicallystoredinliquid-basedelectrolytesolutions,directlyintoelectricalenergy(NguyenandSavinell2010).Therearevariousformsofestablishedflowbatteryenergystoragetechnologies,includingredoxflowbatteries(RFBs)andhybridflowbatteries.RFBs,whichincludevanadiumredoxflowandpolysulphidebromideflowbatteries,havetheelectro-activematerialdissolvedinaliquidelectrolytethatisstoredexternaltothebattery.Thebatterychargesanddischargesbasedonredoxreactions,whicharechemicalreactionsbetweentwoelectrolytesolutionsatdifferentoxidationstates.Theelectrolytesaretypicallyliquid-based,separatedbyamembrane,andstoredinlargetanks.

Hybridflowbatteries,whichincludezinc-bromineandzinc-ceriumflowbatteries,haveoneoftheirelectro-activecomponentsdepositedonasolidsurface,asopposedtobeingdissolvedinaliquidelectrolyte(Alotto,Guarnieri,andMoro2014;NguyenandSavinell2010).

TheglobalflowbatterymarketisdominatedbyvanadiumRFBs,whichisthemoststudiedandcommercializedflowbatterytype(MinkeandTurek2018;Weberetal.2018).Zinc-bromine(Zn-Br)andpolysulphidebromideflowbatterieshavealsobeenwidelystudiedwithsomeinitialcommercializationbutfacetechnicalandeconomicbarriersthathavestalledtheircommercialization.Zn-Brbatteriesarerelativelylowcostandexhibithighenergydensity,highdesignflexibility,rapidcharge,andhighdepthofdischargecapabilities,butsufferfromlowcycle-life,lowenergyefficiency,anddendriteformation,whichimpactsperformance.

7

Polysulphidebromideshaverapidresponsesbutsufferfromexpensivematerialrequirements,limitedenergydensity,relativelylowefficiencies(~60%–75%),andcross-contaminationconcernsduringlong-termbatteryoperation.ThesechallengescurrentlymakeZinc-bromineandpolysulphidebromidemoreexpensiveandinefficientthanthemoreestablishedvanadiumRFBs(Fanetal.2020).

Inprinciple,flowbatterieshaveseveraladvantagesoverotherelectrochemicalstoragetechnologies.Astheactiveelectrolyticmaterialisseparatedfromthe

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论