![储能技术入门总结_第1页](http://file4.renrendoc.com/view14/M06/1E/2A/wKhkGWYU01WAKogiAAIUu6gDlSI618.jpg)
![储能技术入门总结_第2页](http://file4.renrendoc.com/view14/M06/1E/2A/wKhkGWYU01WAKogiAAIUu6gDlSI6182.jpg)
![储能技术入门总结_第3页](http://file4.renrendoc.com/view14/M06/1E/2A/wKhkGWYU01WAKogiAAIUu6gDlSI6183.jpg)
![储能技术入门总结_第4页](http://file4.renrendoc.com/view14/M06/1E/2A/wKhkGWYU01WAKogiAAIUu6gDlSI6184.jpg)
![储能技术入门总结_第5页](http://file4.renrendoc.com/view14/M06/1E/2A/wKhkGWYU01WAKogiAAIUu6gDlSI6185.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE
1
copyright©2011,nationalclimatechangeSecretariatandnationalresearchFoundation.
PAGE
10
copyright©2011,nationalclimatechangeSecretariatandnationalresearchFoundation.
EnErgYSToragETEcHnoLogYPrIMEr:
aSuMMarY
Background
Energycanbestoredinelectrical,mechanical,electro-chemical,chemicalandthermalmeans,whiledeliveringthefinalenergyinelectricalform.(SeeFigure1.)
Type
Sub-group
Examples(notexhaustive)
TypicalApplications
Electrical
Capacitors
Capacitorsandultracapacitors
Powerquality
Superconductors
SuperconductingMagneticEnergyStorage(SMES)
Powerquality,reliability
Mechanical
Potentialenergyinstoragemedium
Pumpedhydro,
Energymanagement,reserve
Compressedairenergystorage(CAES)
Energymanagement,reserve
Kineticenergyinstoragemedium
Low-speedflywheels
Uninterruptiblepowersupply
Advancedflywheels
Powerquality
Electro-chemical
Low-temperaturebatteries
Lead-acid
Powerquality,standbypower
Nickel-cadmium
Powerquality
Lithiumcells
Powerquality
High-temperaturebatteries
Sodium-sulphur
Multi-functional
Sodium-nickelchloride
Standbypower,remoteareaapplications
Flowbatteries
Zinc-bromine
Multi-functional
Vanadium
Remoteareaapplications
Polysulphide-bromine
Multi-functional
Cerium-zinc
-
Chemical
Hydrogencycle
Electrolyser/fuelcellcombination
-
Otherstoragemedia
e.g.chemicalhydrides
-
Thermal
Hotwater
-
Peakshaving
Ceramics
-
Peakshaving
Moltensalt/steam
-
Integrationofrenewable
Ice
-
Peakshaving
Figure1:StorageTypegroupedbyTechnology1
1Source:anthonyPrice,“ElectricalEnergyStorage-areviewofTechnologyoptions”(nov2005),ProceedingsofIcE,civilEngineering158,pgs52-58.
EnergyStorageTechnologyPrimer:aSummary
STagESoFcoMMErcIaLMaTurITY
VRB
Lead-AcidBatteries
Ni-CdBatteries
PumpedHydro
Zn-Br
currently,energystorage(ES)systemspresentedinFigure2areinvariousstagesofcommercialmaturity.Forstationaryutilityapplication2,pumpedhydroelectricityisthedominantcommerciallyavailablesolution(~123gW)globally,withotheradvancedenergysolutionssuchassodium-sulfur,lead-acidandzinc-brominebatteries3,compressedairenergystorage(caES)4,thermalenergystorage5,batteries,flywheels6andotherstrailingbehindandunderdevelopment.Fortransportapplication(i.e.electromobility,ore-mobility),extensivedevelopmentalworkhasbeenfocusedonbatterytechnologies.Lead-acidbatteryisamatureenergystoragetechnology7buthasnotbeencommerciallyviablefore-mobilityapplication.Themainenergystoragetechnologiesaredescribedatappendixa.Figure3presentsestimatedworldwideinstalledenergystoragecapacity.
ThermalEnergyStorage
LithiumBatteries
Metal-Air
LargeSMES
NASBatteries
LowEnergySupercapacitors
CAES
FlowBatteries
HighEnergySupercapacitors
LowSpeedFlywheels
FuelCell
Micro-SMES
Design Developmentand
Prototype
MatureProducts
HighSpeedFlywheels
Figure2:commercialmaturityofdifferentenergystoragesystems
2canbeeithercentralizedordistributedandcanbeutility-owned,customer-ownedorthird-partyowned.
3Mainlydemonstrationorprototypeunitsandoftenalongsiderenewableand/ordistributedenergysources.
4IncaES,off-peakpowerisusedtopumpairintoasealedundergroundcaverntoahighpressure.Whenneeded,thishighpressureaircandriveturbinestogeneratepowerduringpeakhours.
5Thermalenergystorage(TES)isaconceptwherebyenergyisstoredasthermalenergyinenergystoragereservoirstobalanceenergydemandbetweendaytimeandnighttime.Thethermalreservoirmaybemaintainedatatemperatureabove(hotter)orbelow(colder)thatoftheambientenvironment.Themainusesareproductionoficeorchilledwatertocoolenvironmentsduringtheday,andthegenerationofelectricalenergy(throughtheuseofsteam)byhightemperaturestoragesaltswhenthedemandishighintheday.
6Flywheelsworkbyacceleratingrotorswithasignificantmomentofinertia,andmaintainingtheenergyinthesystemasrotationalenergy.Thisenergycanbeconvertedtoelectricalenergywhenneeded.
7notasamainsourceofenergy,replacinggasoline,butmainlyasanauxiliarypowersource.
PAGE
11
copyright©2011,nationalclimatechangeSecretariatandnationalresearchFoundation.
PAGE
4
copyright©2011,nationalclimatechangeSecretariatandnationalresearchFoundation.
Flywheelsandothers:95MW
Batteries:451MW
Thermal:1002MW
compressedair:440MW
MoltenSalt:142MW
Figure3:Estimatedworldwideinstalledenergystoragecapacity(2128MW)in20108
aPPLIcaTIonoFEnErgYSToragEInSIngaPorE
TheuseofenergystorageinSingaporeismostapplicableinthefollowingareas:
Electricvehicleswhichrequiremediumscaleenergystorage(100kWto500kW);
Smartgridsupportinginfrastructurewhichrequiremediumtolargescaleenergystorage(atleast0.1MW);
Buildingmanagement/renewableenergysmoothingwithsmalltomediumscaleenergystorage(1kWto100kW).SeeFigure4.
ElectricVehicle(EnergyStorage)
(TransportscaleES)
Fuel/Energy
Generation
Transmission
Distribution
ElectricityCustomers
EnergyStorage
EnergyStorage
SmartGrid
(LargetomediumscaleES)
HousingandBuilding
(MediumtosmallscaleES)
1GW 100MW 10MW 100kW 10kW
Power
Figure4:ElectricityValuechain
8Source:StrategenandcESaresearch.Excludespumpedhydrocapacity,estimatedat~123gW.
Energystoragetechnologiesthatareapplicabletotheseapplicationsconsistofmainlybattery-basedtechnologies,aswellasFlywheels,HydrogenStorage,Supercapacitor,PumpedHydroelectricity,compressedairEnergyStorage(caES),SuperconductingMagneticEnergyStorage(SMES)andThermalEnergyStorage.asummaryoftherelevantenergystoragetechnologiesareshowninFigure5.
Applications
EnergyStorageTechnologies
E-Mobility
Lead-AcidBatteries •FuelCell*
Li-ionBatteries •Supercapacitor
MetalAirBatteries
NiCdBatteries
SmartGrid
NaSBatteries •HighPower •Pumped- •Super- •FlowZnBr
Lead-Acid Flywheels hydroelectricity capacitor •FlowVRB
Batteries •MicroSMES •CAES •FuelCell*
Li-ionBatteries •LargeSMES •Thermal
MetalAir
Batteries
NiCdBatteries
Housing&Building
Lead-AcidBatteries •Thermal
Li-ionBatteries •FuelCell*
MetalAirBatteries
Figure5:Energystoragetechnologiesandtheirapplications
*utiliseschemicalenergyfromHydrogenstorage.
EnErgYSToragEForTranSPorTaPPLIcaTIonInSIngaPorE
ElectricVehicles(EVs)areseenasthefuturesustainablemodeoftransportworldwideastheyofferthefollowingadvantagesoverinternalcombustionenginecars:
EnergyEfficient.Theelectricmotorsconvert75%ofthechemicalenergyfromthebatteriestopowerthewheels.Thisisunlikeinternalcombustionenginesthatonlyconvert20%oftheenergystoredinthegasoline.
Environmentalfriendliness.currentwell-to-wheelemissionestimatesfromoriginalEquipmentmanufacturers(oEMs)showabout66%reductionincarbonemissionswhenswitchingfromagasolinecartoanequivalent-sizeEV.9Thisreducespollutionintraffics,althoughthesametailpipepollutantswillbepresentatfossil-fuelbasedpowerplantthatproducestheneededelectricity.Therewillbenoairpollutantforelectricityproducedfromrenewableenergysources(e.g.wind,solar,hydroetc.)
9“renault-nissanalliancePartnerswithSingaporegovernmentforZero-EmissionMobility”(accessed29april2011).
/En/nEWS/2009/_STorY/090507-05-e.html
TheauthorsassessthatinSingapore,batteryisthemajormeanofenergystoragetoprovideelectricitytothevehicleandoneofthekeytechnologiesforvehicleelectrification.However,EVsfacesignificantbattery-relatedchallenges.Amongthecurrentbatteryoptions,theauthorsrecommendthatlithium-ionbatteriesarethemostpromising,astheyholdmorethan5timesthespecificenergyand10timesofspecificpowercomparedtotheconventionalleadacidbatteries-promisingaviableformofenergystorage.However,thetechnologystillfacesthefollowingkeyhurdlesforeffectivedeployment:
Longchargingtime.Lithium-ionbatteriesarenotsuitedforfastcharging.unlikecurrentre-fuelingwhichtakesaround5-10minsatpetrolstation,afullrechargeoflithium-ionbatteriescantake2to8hours10.Even“quickcharging”technologiesto80%capacitycantake30minutesandcanbedetrimentaltothebatterylifecycle.
Lowerenergystoragecapacitycomparedtogasoline.Thecommutingrangeofafullychargedbatterypackdependsverymuchonthecapacityofthebatteries,thetypeofroutestraveled,whetherair-conditioning(usesalotofelectricpower)isturnedonandalsodriverhabits.currentbatterytechnologyonafullchargewouldallowarangeofbetween90kmto160km5.Thisismuchlowerthanthetypicalrangeofgasolinethatgoesabove400kmonafulltank.Thiscallsformorefrequentrecharge.
BatteryCost.currentbatterypacksforEVsareexpensive.ThecurrentexpectedcostisarounduSd400-uSd800/kWh.ThisisexpectedtoreducetouSd300-uSd500/kWhby202011.IEaestimatedbatterycostsforPlug-inHybridEVs(PHEVs)andEVsmustdroptowardsuSd300/kWhtobringEVscosttocompetitivelevels.
Lowersafetylevel.underhighstressoperationconditions,largelithium-ionbatterypacksmayundergoathermalrunaway,whicheventuallyresultsinthebatterycatchingfireandexploding.Thisriskishigherasbatteriesbecome“older”butcanbealleviatedbyusingadvancedbatterymanagementsystems(BMS).
E-MoBILITYProjEcTSInSIngaPorE
anEVtaskforce,chairedbytheEnergyMarketingauthority(EMa)andtheLandTransportauthority(LTa)hasbeensetupwithrepresentativesfromgovernmentagenciestoleadtestsandresearchintotheintroductionofEVsinSingaporefrom2010.9,12S$20millionoffundingwassetasidetosupportinfrastructuredevelopmentandtoanalysetherobustness,cost-effectivenessandenvironmentalimpactofelectric-poweredvehiclesinatropicalclimateandautomakers,suchasrenaultandnissan13,havebeeninvolvedinthesestudies.
TheEVtest-bedwaslaunchedinjune2011andwilllasttillend2013.Thetest-bedwillfocusongatheringdataandinsightstoguidetheplanningforthefuturedeploymentofEVs,includingtheoptimalratioofchargingstationsto
10“FactsheetonElectricVehicles(EVs)”,EMa.
11“ElectricPlug-InHybridVehicleroadmap”,IEa(2010).
12“EMaleadsstudytoputelectricvehiclesonSingaporeroads”(accessed17april2011).
/stories/
singaporelocalnews/view/427272/1/.html
vehicles.Fortheconvenienceofthetest-bedparticipants,chargingstationshavebeendesignedtoautomaticallycollectdataontheEVusers’chargingpatterns.Participantsofthistest-bedschemecanapplyforthetaxincentivescheme,EnhancedTechnologyInnovationanddevelopmentScheme(TIdES-PLuS)whichwaivesallvehicletaxessuchasadditionalregistrationFees(arF),certificateofofEntitlement(coE),roadtaxandexciseduty,forthepurposesofr&dandtest-beddingoftransporttechnologies14.
Injan2011,theTechnischeuniversitatMunchen(TuM)teamedupwiththenanyangTechnologicaluniversity(nTu)tosetuptheTuM-crEaTEcentreofElectromobilitytostudyhowe-mobilitywouldworkinmegacitiesinasia,andthetechnologyinfrastructureneededtosupportthiseffort.ThecentreisaprojectunderthenationalresearchFoundation’s(nrF)crEaTE15programme,forresearchonsustainabilityofelectricvehicle16.
InthenationaluniversityofSingapore(nuS),severalresearchershaveconductedr&donenergystorageforEVapplications.detailsofsuchr&dprojectsaredescribedinappendixB.
EnErgYSToragEForSMarTgrIdaPPLIcaTIonSInSIngaPorE
Smartgridsaredigitally-enhancedversionsoftheconventionalelectricitygrid,andakeyenablerforenergysecurityandreliabilityandintegrationofrenewableenergyresources.ThekeydifferencesinthecharacteristicsofsmartgridsandconventionalgridsaresummarisedinFigure6.Inparticular,unlikesmartgrids,conventionalgridsoperatewithlittleornoenergystorage17.Energystoragetechnologiesplayanimportantroleinfacilitatingtheintegrationandstorageofelectricityfromrenewableenergyresourcesintosmartgrids.Energystorageapplicationsinsmartgridsincludetherampingupandsmoothingofpowersupply,anddistributedenergystorage.
Characteristic
Consumerparticipation
Integratinggenerationandstorage
Marketevolution
Resiliency
ConventionalGrid
Consumersareunder-informedandnon-participativewithpowersystem
Dominatedbycentralgeneration.Manyobstaclesexistforintegratingdistributedenergyresources
Limitedwholesalemarkets,notwellintegrated.Limitedopportunitiesforconsumers
Vulnerabletonaturaldisastersandmaliciousactsofterror
SmartGrid
Informed,involvedandactiveconsumers-demandresponseanddistributedenergyresources
Manydistributedenergyresourceswithplug-and-playconvenience,focusonrenewables
Mature,well-integratedwholesalemarkets,growthofnewelectricitymarketsforconsumers
Resilienttoattacksandnaturaldisasterswithrapidrestorationcapabilities
Figure6:Smartgridversus.conventionalgridcharacteristics
14Pressrelease“LaunchofSingapore’sElectricVehicleTest-bed”,(25jun2011).
15crEaTE-campusforresearchExcellenceandTechnologicalEnterprise.
16“oneelectriccar,twouniversities,100researchers”,TheStraitsTimes,(22jan2011).
17drdennisgross,cleantechMagazine(july/august2010.
TheelectricitygridinSingaporeisconsideredreliableandrobust.networklossesarereportedtobeonlyaround3%.Theauthorsforthe“SmartgridPrimer:aSummary”haverecommendedthatapossibleareaofr&dforSingaporeistheintegrationofdistributedgenerationandrenewablesintothegrid,whichrequiresthesupportofenergystoragetechnologies.See“SmartGridPrimer:ASummary”formoreinformation.
Forlarge-scaleenergystoragepurposes,pumpedhydroelectricityandcaESaretechnologieswhicharetypicallyadopted.However,Singaporeisgeologicallydisadvantagedtoimplementthesetechnologiesduetoourlandconstraint.Thereisnosuitableabovegroundsiteforconventionalpumpedhydroelectricity.Similarly,thedeploymentofcaESfaceschallengeinSingaporeduetoalackofsuitablesites.Tothebestknowledgeoftheauthors,SingaporehasnosealedundergroundairpocketsorabandonedmineswhicharerequiredfortheimplementationofcaES.
Theauthorsrecommendthatmid-scaledistributedenergystoragemaybemoresuitableinSingapore
forthefollowingapplications:
Integrationofdistributedrenewableenergygenerationsuchassolarphotovoltaics;
ancillaryservicessuchasfrequencyregulation,i.e.regulationoftheinstantaneousfrequencyofthealternatecurrentsupplyinSingaporetobestabilizedat50Hz,topreventload-sheddingandblackouts.
applicationofrenewableenergyforoff-gridislandapplication.
Singaporehasplanstoincluderenewableenergyinitsurbanlandscape.18Moreover,thereispotentialformid-scaleenergystoragetoplayaroleinoff-gridislandapplicationinSingapore(e.g.SemakauLandfill,Pulauubin,Lighthouses,etc).
Theauthorsassessthatsuitableenergystoragetechnologiesforrenewableenergygenerationintegrationandoff-gridislandapplicationincludelithium-ionbatteries,flowbatteries,sodiumsulfurbatteriesandadvancedlead-acidbatteries.Forpowerapplicationssuchasfrequencyregulation,ontheotherhand,lithium-ionbatteries,advancedlead-acidbatteriesandflywheelsmaybeapplicable.
EnErgYSToragEForHouSIngandBuILdIngaPPLIcaTIonSInSIngaPorE
Energystoragetechnologiescanbepartoffutureplanstoincorporatehigheramountsofenergyfromrenewableenergysources,suchassolarphotovoltaics.Examplesincludethermalenergystoragewhichcanpotentiallybeappliedformajorenergyusage(e.g.thermalenergystoragesystemforcoolingapplicationinrepublicPolytechnicandresortWorldSentosa)inSingapore,fuelcellinprimaryorbackuppowersystem,andbatterysystemsforstorageofenergyfromrenewablesourcessuchassolarandwindenergy.anexampleofenergystorageapplicationforhousingapplicationcanbeseeninthe“SmartHouses”conceptexploredinjapan.19
18reportoftheEconomicStrategiescommittee(February2010),EconomicStrategiescommittee.availablefrom:
.sg/data/cmsresource/ESc%20Full%20report.pdf
19andyBae,“SmartHouseinjapan”,availablefrom:
/blog/articles/smart-house-in-japan.
(accessed1May2011).
Threeformsofenergystoragearesuitableforhousingandbuildingapplications–(i)batteries;(ii)thermalenergystorage;and(iii)fuelcell.(SeeFigure5.)Theenergystorageforhousingandbuildingindiscussionismainlythermalenergystorage(TES),whichisamaturetechnology.This,however,takesupvaluablelandarea,whichisscarceinSingapore.assuch,applicationsattheconsumersideusuallytargetelectricbillreduction,viaeitherdemandchargesorTime-of-usePricing.
Typically,thesinglebiggestcomponentofutilitycostsistheelectricbillforair-conditioning,whichcanbeashighas50%.20ThedeploymentofaTESsystemisthusanattractiveoptionasitcanhelptostorecoolingenergyduringoff-peakhours(whenutilitycostischeaper)anduseitduringthepeakloadatdaytime.Thishelpsthebuildingownertosaveupto40%ofelectricitybill(e.g.$380,000perannumforrepublicPolytechnic)andprovidesenergysavingsof10-20%dependingonthetypeofTESsystem(e.g.air/Water/PhasechangeMaterials).
PoSSIBLEr&darEaSForSIngaPorE
ThereareseveralfundamentalandappliedresearchprojectsintheareaofenergystoragebeingcarriedoutatinstitutessuchasnuSandnTu.Someoftheresearchprojectsandprogrammescurrentlyunderwayattheseinstitutesaredescribedinappendixc.
IntheSingaporecontext,takingintoaccounttheavailableresearchandr&dinstitutionsandcompetencies,theauthorshaveidentifiedbatteriesasthemaintechnologicalopportunityforenergystorageforthenexttwodecades.Torealisethepotentialofbatterytechnologies,Singapore’sr&deffortsshouldbefocusedonsolutionstothecurrentdrawbacksasfollows:
LeadAcid,Nickel-basedandRedoxFlowbatteries:toxicmaterials;
NickelMetal-hydride(NiMH)batteries:Self-dischargeissues;Performanceisalsosensitivetotemperatureconditions;
Lithium-ionbatteries:chargestoragecapacityneedsleadtohighcostforEVs;Safetyissues;
Sodium-basedbatteries:corrosionduetomoltensulfur;and
Flywheels:LimitedtoStationaryutilityEnergyStorage(SuES)applications;highcosts.
r&dforsomeofthesetypesofbatterieswillrequiremorein-depthresearchtosolvetheproblemsofcharging/discharging/depthofcharge/self-dischargelosses.
20Singapore’sSecondnationalcommunication:undertheunitednationsFrameworkconventiononclimatechange,(november2010)nEa.
Maincontributors:
nationaluniversityofSingapore(nuS)
assistantProfessorPalaniBaLaYa(Leadauthor)ProfessorjimYangLEE
ProfessorLiLu
ProfessorB.V.r.cHoWdarIassociateProfessorStefanadaMSassistantProfessorQingWangProfessorHaogong
associateProfessorHansongcHEngassociateProfessorWenFengLuassistantProfessorPohSengLEE
nanyangTechnologicaluniversity(nTu)
VisitingProfessorrachidYaZaMI(Leadauthor)
EnergyresearchInstitute@nTu(ErI@n)EngkiongkoH(TechnicalWriter)MsEvakPILLaI(TechnicalWriter)
InstituteofMaterialsresearchandEngineering(IMrE)drchaoBinHE
drZhaolinLIudrjianweiXudrkuiYao
drMarkYewchoonTan
Disclaimer,LimitationofLiability
Thisreportrepresentsthepersonalopinionsofthecontributors.Thecontributors,ErI@n,thenationaluniversityofSingapore(nuS),nanyangTechnologicaluniversity(nTu)andInstituteofMaterialsresearchandEngineering(IMrE)excludeanylegalliabilityforanystatementmadeinthereport.Innoeventshallthecontributors,ErI@n,nuS,nTuandIMrEofanytierbeliableincontract,tort,strictliability,warrantyorotherwise,foranyspecial,incidentalorconsequentialdamages,suchas,butnotlimitedto,delay,disruption,lossofproduct,lossofanticipatedprofitsorrevenue,lossofuseofequipmentorsystem,non-operationorincreasedexpenseofoperationofotherequipmentorsystems,costofcapital,orcostofpurchaseorreplacementequipmentsystemsorpower.
Acknowledgement
TheauthorshavebenefitedfromcommentsfromseveralcolleaguesfromnuS,nTuandIMrEaswellasfromthefollowinggovernmentalagencies:a*STar,EdB,EMa,LTa,nccSandnrF.FinallywethankkoHEngkiong(ErI@n)forhistirelesseffortinupdatingandconsolidatingthemanyversionsofthisTechnologyPrimer.
Thisreportwasfirstpublishedinaugust2011.Thecontentsoftheprimerreflecttheviewsoftheauthorsandnottheofficialviewsofthegovernmentagencies.ThepublicationoftheprimershasbeenmadepossiblebynccSandnrF,andreproductionofthecontentissubjecttothewrittenconsentoftheauthors,nccSandnrF
APPENDIXA
MAINENERGySTORAGETECHNOLOGIES
Lead-acidbattery
Lead-acidbatterytechnologyisoneoftheoldestandmostdevelopedbatterytechnologies(SeeFigurea1).Theycomeintwobasicforms:floodedleadacidbatteries,whichareconsideredawellprovenandrobustdesign,andvalveregulatedleadacid(VrLa,or“maintenancefreebatteries”)batteries.Thesebatteriesarealsousedintractionforlifts,golfcarts,uninterruptiblePowerSupply(uPS),minesetc.Lead-acidbatterieshavesomeknowndrawbacksandlimitations.Theyareheavy,givingrisetoverypoorenergy-to-weightandpower-to-weightratiosthatlimittheirapplications.Theleadcontentandthesulfuricacidelectrolytemakethebatteryenvironmentallyunfriendly(althoughapproximately98%21oflead-acidbatteriesarerecycled).Theyhaveshortcycle-lifeandlongrechargetimes.Theycanonlyaccommodateasmallnumberoffull(“deep”)dischargesandcannotbestoredinadischargedconditionwithoutservicelifefailure.
relativelylowself-dischargerateoflead-acidbatteriesmakesthemacommonchoiceforstandbystationaryenergystoragesuchasuninterruptiblepowersupplies(uPS).Lead-acidbatterieshavebeenusedforutilityapplicationssuchaspeakshaving.However,theeconomicsandlife-cyclerequirementsdonotworkoutwellforlead-acidbatteries.TheyarethereforenotthedominantproviderofStationeryutilityEnergyStorage(SuES)applications.TheirpopularityisexpectedtodeclineasadvancesinothertechnologiesoccurwiththeexceptionofStarting,LightingandIgnition(SLI)applications.
Figurea1:Lead-acidcarBattery
accordingtotheEnergyadvisorycouncil(Eac),themarketforLead-acidbatteriesisestimatedtobeapproximately
$3billionandgrowinginexcessof8%peryear.
21ExcludingBrazil,russia,Indiaandchina.
NickelBasedBatteries
Therearetwotypesofnickelbatteries,theolder,nickel-cadmium(NiCd)batteries,andthenewer,nickelmetal-hydride(NiMH)batteries,botharerechargeable.
Nickel-Cadmium(NiCd)Batteriesusenickeloxy-hydroxideandmetalliccadmiumastheelectrodes.Theycomeintwodesigns:sealedandvented.nicdarerelativelyinexpensive,abletosustaindeepdischarge,rechargequickly,andhavealongcyclelife.nicdcanalsoendureveryhighdischargerateswithnodamageorlossofcapacity.Hencetheyarecommonamongpowertools.
However,nicdareextremelyenvironmentallyunfriendlybecauseoftheuseoftoxiccadmium.Theyhaverelativelylowenergydensityandrelativelyhighself-dischargerates,whichrequirerechargeafterrelativelyshortstorageperiods.Thechargingratesareverysensitivetohotandcoldtemperatureconditions.Therearealsoknownmemoryeffectsthatshortenthebatteryshelflife.TheycompareunfavorablyintermsofavailabilityandenergydensitywiththenickelMetalHydride(niMH)andLi-ionbatteries.
Therehavebeenafewdemonstrationsoflarge-scaleSuESapplications,suchasthesysteminstalledbythegoldenValleyElectricassociationInc.(gVEa)inFairbanks,alaska.Thesystemconsistsof13,760cellsandcanprovide40MWofpowerforuptosevenminutes.(SeeFigurea2)However,theinherentdisadvantagesofnicdrelativetootheremergingbatterytechnologiesandenvironmentalconsiderationshavelargelyrelegatedni-cdtothebackburner.Thereislittle,ifany,anticipatedgrowthfornicdinSuESapplications.
Figurea2:goldenValleyElectricassociation(gVEa)locatedinFairbanks,ala,13760SaftSBH920highperformancerechargeablenickel-cadmiumcells22
22
/images/PdFs_articles_whitepaper_appros/appProBESS.pdf
Nickelmetal-hydride(NiMH)batteriesareanotheralkalinenickel-basedbatterytechnologythathasreplacednicdinmanyapplications.niMHbatteriesprovide30to40%moreenergycapacityandpowercapabilitiescomparedtothesamesizenicdcell.niMHisabletomeetthehighpowerrequirementsinhybridelectricvehicles(HEV);andassuchhasbeenthedominantbatterytechnologypoweringtoday’sHEVssuchastheToyotaPrius.niMHbatteriesareconsiderablymoreenvironmentallyfriendlycomparedwithleadacidandnicdbatteries.Theycanbechargedinabout3hours,although,likenicd,chargingratesaresensitivetobothhotandcoldtemperatureconditions.WhileniMHbatteriesarecapableofhighpowerdischarge,consistentuseinhigh-currentconditionscanlimitthebattery’slife.
TheniMH’sself-discharge23rateisquitehigh,upto400%greaterthanthatofalead-airbattery.ThemostsignificantoperationalchallengewithniMHrelatestorechargesafety.ThetemperatureandinternalpressureofaniMHbatterycellrisessignificantlyasitreaches100%stateofcharge.Topreventthermalrunaway,complexcell-monitoringelectronicsandsophisticatedchargingalgorithmsmustbedesignedintothebatterysystem.WithniMHtechnologygainingprominenceintheelectricandhybridelectricvehiclemarketsindustryparticipantsbelievethereareloomingpressuresonnickelsupplies,whichisonesignificantfactorthatmaylimitthetechnologies’abilitytoscale.
Thegeneralsenseamongtheindustryisthatothertechnologiesofferamorefavorableenergydensityandcostprofileforutility-scaleenergystorageapplications.
RedoxFlowBatteries
Zinc-bromineflowbatteryisatypeofhybri
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 木工承包合同内脚手架
- 啤酒销售合同书
- 农村住房安全保障工程实施指南
- 网站维护与SEO优化作业指导书
- 投资理财与风险防范作业指导书
- 2025年甘肃货运从业资格证题目答案
- 2025年三明道路货运驾驶员从业资格证考试题库完整
- 2025年货车从业资格证答题软件
- 2024-2025学年四年级语文上册第二单元明月4走月亮作业设计北师大版
- 个人前台自我总结
- 2025年电力铁塔市场分析现状
- GB 12158-2024防止静电事故通用要求
- 山东省滨州市2024-2025学年高二上学期期末地理试题( 含答案)
- 化学-江苏省苏州市2024-2025学年2025届高三第一学期学业期末质量阳光指标调研卷试题和答案
- 蛋鸡生产饲养养殖培训课件
- 运用PDCA降低住院患者跌倒-坠床发生率
- 海底捞员工手册
- 立春气象与生活影响模板
- 中国服装零售行业发展环境、市场运行格局及前景研究报告-智研咨询(2025版)
- 2024年广东省公需课《新质生产力与高质量发展》考核答案
- 临床提高脓毒性休克患者1h集束化措施落实率PDCA品管圈
评论
0/150
提交评论