2024届江苏省大丰市万盈初级中学中考数学押题试卷含解析_第1页
2024届江苏省大丰市万盈初级中学中考数学押题试卷含解析_第2页
2024届江苏省大丰市万盈初级中学中考数学押题试卷含解析_第3页
2024届江苏省大丰市万盈初级中学中考数学押题试卷含解析_第4页
2024届江苏省大丰市万盈初级中学中考数学押题试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省大丰市万盈初级中学中考数学押题试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE的度数是()A.135° B.120° C.60° D.45°2.如图,若a∥b,∠1=60°,则∠2的度数为()A.40° B.60° C.120° D.150°3.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有辆车,则可列方程()A. B.C. D.4.如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN的面积为S,能大致反映S与t函数关系的图象是()A. B. C. D.5.一元二次方程的根的情况是()A.有一个实数根 B.有两个相等的实数根C.有两个不相等的实数根 D.没有实数根6.下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=27.已知二次函数的与的不符对应值如下表:且方程的两根分别为,,下面说法错误的是().A., B.C.当时, D.当时,有最小值8.下列计算错误的是()A.4x3•2x2=8x5B.a4﹣a3=aC.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b29.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为,,,,则四人中成绩最稳定的是()A.甲 B.乙 C.丙 D.丁10.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y(单位:元)与一次性购买该书的数量x(单位:本)之间的函数关系如图所示,则下列结论错误的是()A.一次性购买数量不超过10本时,销售价格为20元/本B.a=520C.一次性购买10本以上时,超过10本的那部分书的价格打八折D.一次性购买20本比分两次购买且每次购买10本少花80元二、填空题(本大题共6个小题,每小题3分,共18分)11.已知,大正方形的边长为4厘米,小正方形的边长为2厘米,起始状态如图所示,大正方形固定不动,把小正方形向右平移,当两个正方形重叠部分的面积为2平方厘米时,小正方形平移的距离为_____厘米.12.函数中自变量x的取值范围是_____;函数中自变量x的取值范围是______.13.已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为S甲2、S乙2,则S甲2__S乙2(填“>”、“=”、“<”)14.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.15.已知x(x+1)=x+1,则x=________.16.如图,已知直线m∥n,∠1=100°,则∠2的度数为_____.三、解答题(共8题,共72分)17.(8分)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.18.(8分)未成年人思想道德建设越来越受到社会的关注,辽阳青少年研究所随机调查了本市一中学100名学生寒假中花零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.根据调查数据制成了频分组频数频率0.5~50.50.150.5~200.2100.5~150.5200.5300.3200.5~250.5100.1率分布表和频率分布直方图(如图).(1)补全频率分布表;(2)在频率分布直方图中,长方形ABCD的面积是;这次调查的样本容量是;(3)研究所认为,应对消费150元以上的学生提出勤俭节约的建议.试估计应对该校1000名学生中约多少名学生提出这项建议.19.(8分)如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(4,6),点P为线段OA上一动点(与点O、A不重合),连接CP,过点P作PE⊥CP交AB于点D,且PE=PC,过点P作PF⊥OP且PF=PO(点F在第一象限),连结FD、BE、BF,设OP=t.(1)直接写出点E的坐标(用含t的代数式表示):;(2)四边形BFDE的面积记为S,当t为何值时,S有最小值,并求出最小值;(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,说明理由.20.(8分)某商场甲、乙、丙三名业务员2018年前5个月的销售额(单位:万元)如下表:月份销售额人员第1月第2月第3月第4月第5月甲691088乙57899丙5910511(1)根据上表中的数据,将下表补充完整:统计值数值人员平均数(万元)众数(万元)中位数(万元)方差甲881.76乙7.682.24丙85(2)甲、乙、丙三名业务员都说自己的销售业绩好,你赞同谁的说法?请说明理由.21.(8分)(8分)如图,在平面直角坐标系中,O为原点,直线AB分别与x轴、y轴交于B和A,与反比例函数的图象交于C、D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=1.(1)求直线AB和反比例函数的解析式;(1)求△OCD的面积.22.(10分)如图,在边长为1个单位长度的小正方形网格中:(1)画出△ABC向上平移6个单位长度,再向右平移5个单位长度后的△A1B1C1.(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2.(3)求△CC1C2的面积.23.(12分)在平面直角坐标系中,二次函数y=x2+ax+2a+1的图象经过点M(2,-3)。(1)求二次函数的表达式;(2)若一次函数y=kx+b(k≠0)的图象与二次函数y=x2+ax+2a+1的图象经过x轴上同一点,探究实数k,b满足的关系式;(3)将二次函数y=x2+ax+2a+1的图象向右平移2个单位,若点P(x0,m)和Q(2,n)在平移后的图象上,且m>n,结合图象求x0的取值范围.24.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).(1)求此抛物线的解析式.(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标.

参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】

易得△ABF与△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度数即可.【详解】∵四边形ABCD是正方形,∴AB=AD,∠BAF=∠DAF,∴△ABF≌△ADF,∴∠AFD=∠AFB,∵CB=CE,∴∠CBE=∠CEB,∵∠BCE=∠BCD+∠DCE=90°+60°=150°,∴∠CBE=15°,∵∠ACB=45°,∴∠AFB=∠ACB+∠CBE=60°.∴∠AFE=120°.故选B.【点睛】此题考查正方形的性质,熟练掌握正方形及等边三角形的性质,会运用其性质进行一些简单的转化.2、C【解析】如图:∵∠1=60°,∴∠3=∠1=60°,又∵a∥b,∴∠2+∠3=180°,∴∠2=120°,故选C.点睛:本题考查了平行线的性质,对顶角相等的性质,熟记性质是解题的关键.平行线的性质定理:两直线平行,同位角相等,内错角相等,同旁内角互补,两条平行线之间的距离处处相等.3、A【解析】

根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余1个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x辆车,则可列方程:

3(x-2)=2x+1.

故选:A.【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示总人数是解题关键.4、C【解析】分析:本题需要分两种情况来进行计算得出函数解析式,即当点N和点D重合之前以及点M和点B重合之前,根据题意得出函数解析式.详解:假设当∠A=45°时,AD=2,AB=4,则MN=t,当0≤t≤2时,AM=MN=t,则S=,为二次函数;当2≤t≤4时,S=t,为一次函数,故选C.点睛:本题主要考查的就是函数图像的实际应用问题,属于中等难度题型.解答这个问题的关键就是得出函数关系式.5、D【解析】试题分析:△=22-4×4=-12<0,故没有实数根;故选D.考点:根的判别式.6、C【解析】分析:根据每个选项所涉及的数学知识进行分析判断即可.详解:A选项中,“五边形的外角和为360°”是真命题,故不能选A;B选项中,“切线垂直于经过切点的半径”是真命题,故不能选B;C选项中,因为点(3,-2)关于y轴的对称点的坐标是(-3,-2),所以该选项中的命题是假命题,所以可以选C;D选项中,“抛物线y=x2﹣4x+2017对称轴为直线x=2”是真命题,所以不能选D.故选C.点睛:熟记:(1)凸多边形的外角和都是360°;(2)切线的性质;(3)点P(a,b)关于y轴的对称点为(-a,b);(4)抛物线的对称轴是直线:等数学知识,是正确解答本题的关键.7、C【解析】

分别结合图表中数据得出二次函数对称轴以及图像与x轴交点范围和自变量x与y的对应情况,进而得出答案.【详解】A、利用图表中x=0,1时对应y的值相等,x=﹣1,2时对应y的值相等,∴x=﹣2,5时对应y的值相等,∴x=﹣2,y=5,故此选项正确;B、方程ax2+bc+c=0的两根分别是x1、x2(x1<x2),且x=1时y=﹣1;x=2时,y=1,∴1<x2<2,故此选项正确;C、由题意可得出二次函数图像向上,∴当x1<x<x2时,y<0,故此选项错误;D、∵利用图表中x=0,1时对应y的值相等,∴当x=时,y有最小值,故此选项正确,不合题意.所以选C.【点睛】此题主要考查了抛物线与x轴的交点以及利用图像上点的坐标得出函数的性质,利用数形结合得出是解题关键.8、B【解析】

根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b)1=a1±1ab+b1.可巧记为:“首平方,末平方,首末两倍中间放”可得答案.【详解】A选项:4x3•1x1=8x5,故原题计算正确;

B选项:a4和a3不是同类项,不能合并,故原题计算错误;

C选项:(-x1)5=-x10,故原题计算正确;

D选项:(a-b)1=a1-1ab+b1,故原题计算正确;

故选:B.【点睛】考查了整式的乘法,关键是掌握整式的乘法各计算法则.9、D【解析】

根据方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好可得答案.【详解】∵0.45<0.51<0.62,∴丁成绩最稳定,故选D.【点睛】此题主要考查了方差,关键是掌握方差越小,稳定性越大.10、D【解析】

A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.【详解】解:A、∵200÷10=20(元/本),∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;B、∵200+16×(30﹣10)=520(元),∴a=520,B选项正确;D、∵200×2﹣200﹣16×(20﹣10)=40(元),∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.故选D.【点睛】考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、1或5.【解析】

小正方形的高不变,根据面积即可求出小正方形平移的距离.【详解】解:当两个正方形重叠部分的面积为2平方厘米时,重叠部分宽为2÷2=1,①如图,小正方形平移距离为1厘米;②如图,小正方形平移距离为4+1=5厘米.故答案为1或5,【点睛】此题考查了平移的性质,要明确,平移前后图形的形状和面积不变.画出图形即可直观解答.12、x≠2x≥3【解析】

根据分式的意义和二次根式的意义,分别求解.【详解】解:根据分式的意义得2-x≠0,解得x≠2;根据二次根式的意义得2x-6≥0,解得x≥3.故答案为:x≠2,x≥3.【点睛】数自变量的范围一般从几个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.13、>【解析】

要比较甲、乙方差的大小,就需要求出甲、乙的方差;首先根据折线统计图结合根据平均数的计算公式求出这两组数据的平均数;接下来根据方差的公式求出甲、乙两个样本的方差,然后比较即可解答题目.【详解】甲组的平均数为:=4,S甲2=×[(3-4)2+(6-4)2+(2-4)2+(6-4)2+(4-4)2+(3-4)2]=,乙组的平均数为:=4,S乙2=×[(4-4)2+(3-4)2+(5-4)2+(3-4)2+(4-4)2+(5-4)2]=,∵>,∴S甲2>S乙2.故答案为:>.【点睛】本题考查的知识点是方差,算术平均数,折线统计图,解题的关键是熟练的掌握方差,算术平均数,折线统计图.14、40°【解析】

直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.【详解】如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,

∵∠1+∠2+∠3+∠4=220°,

∴∠1+∠2+∠6+∠3+∠4+∠7=360°,

∴∠6+∠7=140°,

∴∠5=180°-(∠6+∠7)=40°.

故答案为40°.【点睛】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.15、1或-1【解析】方程可化为:,∴或,∴或.故答案为1或-1.16、80°.【解析】

如图,已知m∥n,根据平行线的性质可得∠1=∠3,再由平角的定义即可求得∠2的度数.【详解】如图,∵m∥n,∴∠1=∠3,∵∠1=100°,∴∠3=100°,∴∠2=180°﹣100°=80°,故答案为80°.【点睛】本题考查了平行线的性质,熟练运用平行线的性质是解决问题的关键.三、解答题(共8题,共72分)17、(1)y=﹣x2+2x+1.(2)当t=2时,点M的坐标为(1,6);当t≠2时,不存在,理由见解析;(1)y=﹣x+1;P点到直线BC的距离的最大值为,此时点P的坐标为(,).【解析】【分析】(1)由点A、B的坐标,利用待定系数法即可求出抛物线的表达式;(2)连接PC,交抛物线对称轴l于点E,由点A、B的坐标可得出对称轴l为直线x=1,分t=2和t≠2两种情况考虑:当t=2时,由抛物线的对称性可得出此时存在点M,使得四边形CDPM是平行四边形,再根据点C的坐标利用平行四边形的性质可求出点P、M的坐标;当t≠2时,不存在,利用平行四边形对角线互相平分结合CE≠PE可得出此时不存在符合题意的点M;(1)①过点P作PF∥y轴,交BC于点F,由点B、C的坐标利用待定系数法可求出直线BC的解析式,根据点P的坐标可得出点F的坐标,进而可得出PF的长度,再由三角形的面积公式即可求出S关于t的函数表达式;②利用二次函数的性质找出S的最大值,利用勾股定理可求出线段BC的长度,利用面积法可求出P点到直线BC的距离的最大值,再找出此时点P的坐标即可得出结论.【详解】(1)将A(﹣1,0)、B(1,0)代入y=﹣x2+bx+c,得,解得:,∴抛物线的表达式为y=﹣x2+2x+1;(2)在图1中,连接PC,交抛物线对称轴l于点E,∵抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(1,0)两点,∴抛物线的对称轴为直线x=1,当t=2时,点C、P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形,∵抛物线的表达式为y=﹣x2+2x+1,∴点C的坐标为(0,1),点P的坐标为(2,1),∴点M的坐标为(1,6);当t≠2时,不存在,理由如下:若四边形CDPM是平行四边形,则CE=PE,∵点C的横坐标为0,点E的横坐标为0,∴点P的横坐标t=1×2﹣0=2,又∵t≠2,∴不存在;(1)①在图2中,过点P作PF∥y轴,交BC于点F.设直线BC的解析式为y=mx+n(m≠0),将B(1,0)、C(0,1)代入y=mx+n,得,解得:,∴直线BC的解析式为y=﹣x+1,∵点P的坐标为(t,﹣t2+2t+1),∴点F的坐标为(t,﹣t+1),∴PF=﹣t2+2t+1﹣(﹣t+1)=﹣t2+1t,∴S=PF•OB=﹣t2+t=﹣(t﹣)2+;②∵﹣<0,∴当t=时,S取最大值,最大值为.∵点B的坐标为(1,0),点C的坐标为(0,1),∴线段BC=,∴P点到直线BC的距离的最大值为,此时点P的坐标为(,).【点睛】本题考查了待定系数法求一次(二次)函数解析式、平行四边形的判定与性质、三角形的面积、一次(二次)函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线表达式;(2)分t=2和t≠2两种情况考虑;(1)①利用三角形的面积公式找出S关于t的函数表达式;②利用二次函数的性质结合面积法求出P点到直线BC的距离的最大值.18、⑴表格中依次填10,100.5,25,0.25,150.5,1;⑵0.25,100;⑶1000×(0.3+0.1+0.05)=450(名).【解析】

(1)由频数直方图知组距是50,分组数列中依次填写100.5,150.5;0.5-50.5的频数=100×0.1=10,由各组的频率之和等于1可知:100.5-150.5的频率=1-0.1-0.2-0.3-0.1-0.05=0.25,则频数=100×0.25=25,由此填表即可;(2)在频率分布直方图中,长方形ABCD的面积为50×0.25=12.5,这次调查的样本容量是100;(3)先求得消费在150元以上的学生的频率,继而可求得应对该校1000学生中约多少名学生提出该项建议..【详解】解:填表如下:(2)长方形ABCD的面积为0.25,样本容量是100;提出这项建议的人数人.【点睛】本题考查了频数分布表,样本估计总体、样本容量等知识.注意频数分布表中总的频率之和是1.19、(1)、(t+6,t);(2)、当t=2时,S有最小值是16;(3)、理由见解析.【解析】

(1)如图所示,过点E作EG⊥x轴于点G,则∠COP=∠PGE=90°,由题意知CO=AB=6、OA=BC=4、OP=t,∵PE⊥CP、PF⊥OP,∴∠CPE=∠FPG=90°,即∠CPF+∠FPE=∠FPE+∠EPG,∴∠CPF=∠EPG,又∵CO⊥OG、FP⊥OG,∴CO∥FP,∴∠CPF=∠PCO,∴∠PCO=∠EPG,在△PCO和△EPG中,∵∠PCO=∠EPG,∠POC=∠EGP,PC=EP,∴△PCO≌△EPG(AAS),∴CO=PG=6、OP=EG=t,则OG=OP+PG=6+t,则点E的坐标为(t+6,t),(2)∵DA∥EG,∴△PAD∽△PGE,∴,∴,∴AD=t(4﹣t),∴BD=AB﹣AD=6﹣t(4﹣t)=t2﹣t+6,∵EG⊥x轴、FP⊥x轴,且EG=FP,∴四边形EGPF为矩形,∴EF⊥BD,EF=PG,∴S四边形BEDF=S△BDF+S△BDE=×BD×EF=×(t2﹣t+6)×6=(t﹣2)2+16,∴当t=2时,S有最小值是16;(3)①假设∠FBD为直角,则点F在直线BC上,∵PF=OP<AB,∴点F不可能在BC上,即∠FBD不可能为直角;②假设∠FDB为直角,则点D在EF上,∵点D在矩形的对角线PE上,∴点D不可能在EF上,即∠FDB不可能为直角;③假设∠BFD为直角且FB=FD,则∠FBD=∠FDB=45°,如图2,作FH⊥BD于点H,则FH=PA,即4﹣t=6﹣t,方程无解,∴假设不成立,即△BDF不可能是等腰直角三角形.20、(1)8.2;9;9;6.4;(2)赞同甲的说法.理由见解析.【解析】

(1)利用平均数、众数、中位数的定义和方差的计算公式求解;(2)利用甲的平均数大得到总营业额高,方差小,营业额稳定进行判断.【详解】(1)甲的平均数;乙的众数为9;丙的中位数为9,丙的方差;故答案为8.2;9;9;6.4;(2)赞同甲的说法.理由是:甲的平均数高,总营业额比乙、丙都高,每月的营业额比较稳定.【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小.记住方差的计算公式.也考查了平均数、众数和中位数.21、(1),;(1)2.【解析】试题分析:(1)先求出A、B、C点坐标,用待定系数法求出直线AB和反比例的函数解析式;(1)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解.试题解析:(1)∵OB=4,OE=1,∴BE=1+4=3.∵CE⊥x轴于点E,tan∠ABO==,∴OA=1,CE=3,∴点A的坐标为(0,1)、点B的坐标为C(4,0)、点C的坐标为(﹣1,3),设直线AB的解析式为,则,解得:,故直线AB的解析式为,设反比例函数的解析式为(),将点C的坐标代入,得3=,∴m=﹣3.∴该反比例函数的解析式为;(1)联立反比例函数的解析式和直线AB的解析式可得,可得交点D的坐标为(3,﹣1),则△BOD的面积=4×1÷1=1,△BOD的面积=4×3÷1=3,故△OCD的面积为1+3=2.考点:反比例函数与一次函数的交点问题.22、(1)见解析(2)见解析(3)9【解析】试题分析:(1)将△ABC向上平移6个单位长度,再向右平移5个单位长度后的△A1B1C1,如图所示;(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,如图所示.试题解析:(1)根据题意画出图形,△A1B1C1为所求三角形;(2)根据题意画出图形,△A2B2C2为所求三角形.考点:1.作图-位似变换,2.作图-平移变换23、(1)y=x2-2x-3;(2)k=b;(3)x0<2或x0>1.【解析】

(1)将点M坐标代入y=x2+ax+2a+1,求出a的值,进而可得到二次函数表达式;(2)先求出抛物线与x轴的交点,将交点代入一次函数解析式,即可得到k,b满足的关系;(3)先求出平移后的新抛物线的解析式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论