版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《探索二次函数综合型压轴题解题技巧》与圆相关的压轴题(附答案)方法提炼:1、运用转化的思想。转化的数学思想是解决数学问题的核心思想,由于函数与几何结合的问题都具有较强的综合性,因此在解决这类问题时,要善于把“新知识”转化为“旧知识”,把“未知”化为“已知”,把“抽象”的问题转化为“具体”的问题,把“复杂”的问题转化为“简单”的问题。2、综合使用分析法和综合法。就是从条件与结论出发进行联想、推理,“由已知得可知”,“从要求到需求”,通过对问题的“两边夹击”,使它们在中间的某个环节上产生联系,从而使问题得以解决。典例引领:19.如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴正半轴交于点C,对称轴为直线x=1,且OB=OC,(1)求抛物线的表达式;(2)D是直线BC上方抛物线上一点,DE⊥BC于E,若CE=3DE,求点D的坐标;(3)将抛物线向左平移,使顶点P落在y轴上,直线l与抛物线相交于M、N两点(点M,N都不与点P重合),若以MN为直径的圆恰好经过O,P两点,求直线l的表达式.分析:(1)x=﹣,则b=2,设点C(0,c),则点B(c,0),将点B的坐标代入二次函数表达式,即可求解;(2)3DE=3×DH,CE=CH﹣EH=m﹣DH,即可求解;(3)在点O处,,在点P处,,即可求解.解:(1)x=﹣,则b=2,设点C(0,c),则点B(c,0),将点B的坐标代入二次函数表达式并解得:c=3,故函数的表达式为:y=﹣x2+2x+3,函数的顶点为(1,4);(2)过点D作y轴的平行线交直线BC与点H,过点C作x轴的平行线交DH于点R,将点C、B的坐标代入一次函数表达式得:直线BC的表达式为:y=﹣x+3,设点D(m,﹣m2+2m+3),则点H(m,3﹣m),∵OB=OB=3,∴∠OCB=∠OBC=45°,∴CR=CH=m,DH=﹣m2+2m+3﹣3+m=﹣m2+3m,3DE=3×DH,CE=CH﹣EH=m﹣DH,∵CE=3DE,即RH=2DH,则m=2(﹣m2+3m),解得:m=,则点D(,);(3)平移前函数的顶点为(1,4),则平移后函数的表达式为:y=﹣x2+4,如图所示,以MN为直径的圆恰好经过O,P两点,则∠MON=∠MPN=90°,在点O处,过点M、N分别作x轴的垂线交于点G、H,∵∠GOM+∠NOH=90°,∠NOH+∠ONH=90°,∴∠MOG=∠ONH=α,设点M、N的坐标分别为(m,4﹣m2)、(n,4﹣n2),(m<n,m<0),则tan∠MOG=tan∠ONH=α,即:…①,在点P处,同理可得:…②,联立①②并整理得:m2+n2=4,mn=﹣1,解得:m=±,n=,将点M、N的坐标代入一次函数表达式:y=kx+b并解得:k=,b=3,故直线l的表达式:y=x+3.点评:本题为二次函数综合运用题,涉及到一次函数、解直角三角形、圆的基本知识,其中(3),数据计算量大,有一定的难度.跟踪训练:1.如图,抛物线y=ax2﹣2ax+m的图象经过点P(4,5),与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,且S△PAB=10.(1)求抛物线的解析式;(2)在抛物线上是否存在点Q使得△PAQ和△PBQ的面积相等?若存在,求出Q点的坐标,若不存在,请说明理由;(3)过A、P、C三点的圆与抛物线交于另一点D,求出D点坐标及四边形PACD的周长.2.已知如图,二次函数y=ax2+bx+2的图象经过A(3,3),与x轴正半轴交于B点,与y轴交于C点,△ABC的外接圆恰好经过原点O.(1)求B点的坐标及二次函数的解析式;(2)抛物线上一点Q(m,m+3),(m为整数),点M为△ABC的外接圆上一动点,求线段QM长度的范围;(3)将△AOC绕平面内一点P旋转180°至△A'O'C'(点O'与O为对应点),使得该三角形的对应点中的两个点落在y=ax2+bx+2的图象上,求出旋转中心P的坐标.3.如图,已知动圆A恒过定点B(0,﹣1),圆心A在抛物线y=﹣x2上运动,MN为⊙A在x轴上截得的弦(点M在点N左侧).(1)当点A坐标为(,a)时,求a的值,并计算此时⊙A的半径与弦MN的长;(2)当⊙A的圆心A运动时,判断弦MN的长度是否发生变化?若改变,请举例说明;若不变,请说明理由;(3)连接BM,BN,当△OBM与△OBN相似时,计算点M的坐标.4.定义:如果一条直线与一条曲线有且只有一个交点,且曲线位于直线的同旁,称之为直线与曲线相切,这条直线叫做曲线的切线,直线与曲线的唯一交点叫做切点.(1)如图,在平面直角坐标系中,点O为坐标原点,以点A(0,﹣3)为圆心,5为半径作圆A,交x轴的负半轴于点B,求过点B的圆A的切线的解析式;(2)若抛物线y=ax2(a≠0)与直线y=kx+b(k≠0)相切于点(2,2),求直线的解析式;(3)若函数y=x2+(n﹣k﹣1)x+m+k﹣2的图象与直线y=﹣x相切,且当﹣1≤n≤2时,m的最小值为k,求k的值.5.如图1,在平面直角坐标系中,直线y=﹣5x+5与x轴,y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴的另一交点为B.(1)求抛物线解析式及B点坐标;(2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时,四边形AMBC面积最大,求此时点M的坐标及四边形AMBC的面积;(3)如图2,若P点是半径为2的⊙B上一动点,连接PC、PA,当点P运动到某一位置时,PC+PA的值最小,请求出这个最小值,并说明理由.6.如图,在平面直角坐标系中,A(﹣9m,0),B(m,0),(m>0)以AB为直径的⊙M交y正半轴于点C,CD是⊙M的切线,交x正半轴于点D,过A作AE⊥CD于E,交⊙M于F.(1)求C的坐标:(用m的式子表示)(2)①请证明:EF=OB;②用含m的式子表示△AFC的周长;③若CD=,S△AFC,S△BDC分别表示△AFC,△BDC的面积,记k=,对于经过原点的二次函数y=ax2﹣x+c,当≤x≤k时,函数y的最大值为a,求此二次函数的解析式.7.如图,抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C,直线y=﹣x与该抛物线交于E,F两点.(1)求抛物线的解析式.(2)P是直线EF下方抛物线上的一个动点,作PH⊥EF于点H,求PH的最大值.(3)以点C为圆心,1为半径作圆,⊙C上是否存在点M,使得△BCM是以CM为直角边的直角三角形?若存在,直接写出M点坐标;若不存在,说明理由.8.已知:直线y=﹣x﹣4分别交x、y轴于A、C两点,点B为线段AC的中点,抛物线y=ax2+bx经过A、B两点,(1)求该抛物线的函数关系式;(2)以点B关于x轴的对称点D为圆心,以OD为半径作⊙D,连结AD、CD,问在抛物线上是否存在点P,使S△ACP=2S△ACD?若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由;(3)在(2)的条件下,若E为⊙D上一动点(不与A、O重合),连结AE、OE,问在x轴上是否存在点Q,使∠ACQ:∠AEO=2:3?若存在,请求出所有满足条件的点Q的坐标;若不存在,请说明理由.9.如图,已知抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,﹣3),tan∠DBA=(1)求抛物线的解析式;(2)已知点M为抛物线上一动点,且在第二象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.10.如图,一次函数y=2x与反比例函数y=(k>0)的图象交于A、B两点,点P在以C(﹣2,0)为圆心,1为半径的圆上,Q是AP的中点(1)若AO=,求k的值;(2)若OQ长的最大值为,求k的值;(3)若过点C的二次函数y=ax2+bx+c同时满足以下两个条件:①a+b+c=0;②当a≤x≤a+1时,函数y的最大值为4a,求二次项系数a的值.11.如图,抛物线y=ax2+6ax(a为常数,a>0)与x轴交于O,A两点,点B为抛物线的顶点,点D的坐标为(t,0)(﹣3<t<0),连接BD并延长与过O,A,B三点的⊙P相交于点C.(1)求点A的坐标;(2)过点C作⊙P的切线CE交x轴于点E.①如图1,求证:CE=DE;②如图2,连接AC,BE,BO,当a=,∠CAE=∠OBE时,求﹣的值.12.如图,抛物线y=ax2+bx的对称轴为y轴,且经过点(,),P为抛物线上一点,A(0,).(1)求抛物线解析式;(2)Q为直线AP上一点,且满足AQ=2AP.当P运动时,Q在某个函数图象上运动,试写出Q点所在函数的解析式;(3)如图2,PA为半径作⊙P与x轴分别交于M(x1,0),N(x2,0)(x1<x2)两点,当△AMN为等腰三角形时,求点P的横坐标.13.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,二次函数y=﹣x2+bx+c的图象经过A、E两点,且点E的坐标为(﹣,0),以OC为直径作半圆,圆心为D.(1)求二次函数的解析式;(2)求证:直线BE是⊙D的切线;(3)若直线BE与抛物线的对称轴交点为P,M是线段CB上的一个动点(点M与点B,C不重合),过点M作MN∥BE交x轴与点N,连结PM,PN,设CM的长为t,△PMN的面积为S,求S与t的函数关系式,并写出自变量t的取值范围.S是否存在着最大值?若存在,求出最大值;若不存在,请说明理由.
参考答案1.解:(1)y=ax2﹣2ax+m,函数的对称轴为:x=1,S△PAB=10=×AB×yP=AB×5,解得:AB=4,故点A、B的坐标分别为:(﹣1,0)、(3,0),抛物线的表达式为:y=a(x+1)(x﹣3),将点P的坐标代入上式并解得:a=1,故抛物线的表达式为:y=x2﹣2x﹣3…①;(2)①当A、B在点Q(Q′)的同侧时,如图1,△PAQ′和△PBQ′的面积相等,则点P、Q′关于对称轴对称,故点Q′(﹣2,5);②当A、B在点Q的两侧时,如图1,设PQ交x轴于点E,分别过点A、B作PQ的垂线交于点M、N,△PAQ和△PBQ的面积相等,则AM=BN,而∠BEN=∠AEM,∠AME=∠BNE=90°,∴△AME≌△BNE(AAS),∴AE=BE,即点E是AB的中点,则点E(1,0),将点P、E的坐标代入一次函数表达式并解得:直线PQ的表达式为:y=x﹣…②,联立①②并解得:x=﹣或4(舍去4),故点Q(﹣,﹣),综上,点Q的坐标为:(﹣2,5)或(﹣,﹣);(3)过点P作PO′⊥x轴于点O′,则点O′(4,0),则AO′=PO′=5,而CO′=5,故圆O′是过A、P、C三点的圆,设点D(m,m2﹣2m﹣3),点O′(4,0),则DO′=5,即(m﹣4)2+(m2﹣2m﹣3)2=25,化简得:m(m+1)(m﹣1)(m﹣4)=0,解得:m=0或﹣1或1或4(舍去0,﹣1,4),故:m=1,故点D(1,﹣4);四边形PACD的周长=PA+AC+CD+PD=5+++3=6+4.2.解:(1)过点A分别作x轴、y轴的垂线,垂足分别为H、G,连接AB,∵∠GAC+∠BAH=90°,∠BAH+∠ABH=90°,∴∠ABH=∠GCA,∠AHB=∠AGC=90°,AG=AH=3,∴△AHB≌△AGC(AAS),∴GC=HB=1,故点B(4,0),将点A、B的坐标代入二次函数y=ax2+bx+2并解得:a=﹣,b=,故抛物线的表达式为:;(2)由题得:,m1=1;m2=(舍)所以m=1,故点Q(1,4),设圆的圆心为N,则点N在OC和OB中垂线的交点上,即点N(2,1),则圆的半径为,NQ==,故≤QM≤;(3)抛物线的表达式可整理为:y=﹣(5x+3)(x﹣4),设旋转中心P的坐标为:(m,n),由中点公式得:点O旋转后O′的坐标为(2m,2n),同理点A、C旋转后对应点A′、C′的坐标分别为:(2m﹣3,2n﹣3)、(2m,2n﹣2),①当点O′、A′在抛物线上时,将点O′、A′的坐标代入抛物线表达式得:,解得:;②当点C′、A′在抛物线上时,将点C′、A′的坐标代入抛物线表达式得:,解得:;③当点C′、O′在抛物线上时,同理可得:m无解;综上,点P的坐标为:或.3.解:(1)把点A()代入得,a=﹣,∵B(0,﹣1),∴AB∥x轴,∴⊙A的半径为,如图1,过点A作AE⊥MN于点E,连接AM,则AM=AB=,∴ME===1,由垂径定理,MN=2ME=2×1=2.故此时⊙A的半径为,弦MN的长为2;(2)MN不变.如图2,理由如下:设点A(m,n),则AB2=m2+(n+1)2,在Rt△AME中,ME2=AM2﹣AE2=m2+(n+1)2﹣n2=m2+2n+1,∵点A在抛物线y=﹣x2上,﹣m2=n,将n=﹣代入ME2=m2+2n+1得,ME2=1,ME=1,由垂径定理得,MN=2ME=2×1=2(是定值,不变);(3)由(2)知MN=2,设M(x,0),则N(x+2,0).当△OBM与△OBN相似,有以下情况:①M、N在y轴同侧,∵△OBM与△OBN相似,∴,即OB2=OM•ON,∴x(x+2)=1,整理得,x2+2x﹣1=0,解得:,∴当M、N在y轴右侧时,M(﹣1+,0),当M、N在y轴左侧时,M(﹣1﹣,0),②M、N在y轴两侧时,∵△OBM与△OBN相似,∴,即OB2=OM•ON,﹣x(x+2)=1,整理得,x2+2x+1=0,解得x=﹣1,此时△OBM与△OBN全等,M(﹣1,0),综合以上可得,M点的坐标为(﹣1+,0)或(﹣1﹣,0)或(﹣1,0).4.解:(1)如图1,连接AB,记过点B的⊙A切线交y轴于点E∴AB=5,∠ABE=90°∵A(0,﹣3),∠AOB=90°∴OA=3∴OB==4∴B(﹣4,0)∵∠OAB=∠BAE,∠AOB=∠ABE=90°∴△OAB∽△BAE∴∴AE==∴OE=AE﹣OA=∴E(0,)设直线BE解析式为:y=kx+∴﹣4k+=0,解得:k=∴过点B的⊙A的切线的解析式为y=x+(2)∵抛物线y=ax2经过点(2,2)∴4a=2,解得:a=∴抛物线解析式:y=x2∵直线y=kx+b经过点(2,2)∴2k+b=2,可得:b=2﹣2k∴直线解析式为:y=kx+2﹣2k∵直线与抛物线相切∴关于x的方程x2=kx+2﹣2k有两个相等的实数根方程整理得:x2﹣2kx+4k﹣4=0∴△=(﹣2k)2﹣4(4k﹣4)=0解得:k1=k2=2∴直线解析式为y=2x﹣2(3)∵函数y=x2+(n﹣k﹣1)x+m+k﹣2的图象与直线y=﹣x相切∴关于x的方程x2+(n﹣k﹣1)x+m+k﹣2=﹣x有两个相等的实数根方程整理得:x2+(n﹣k)x+m+k﹣2=0∴△=(n﹣k)2﹣4×(m+k﹣2)=0整理得:m=(n﹣k)2﹣k+2,可看作m关于n的二次函数,对应抛物线开口向上,对称轴为直线x=k∵当﹣1≤n≤2时,m的最小值为k①如图2,当k<﹣1时,在﹣1≤n≤2时m随n的增大而增大∴n=﹣1时,m取得最小值k∴(﹣1﹣k)2﹣k+2=k,方程无解②如图3,当﹣1≤k≤2时,n=k时,m取得最小值k∴﹣k+2=k,解得:k=1③如图4,当k>2时,在﹣1≤n≤2时m随n的增大而减小∴n=2时,m取得最小值k∴(2﹣k)2﹣k+2=k,解得:k1=3+,k2=3﹣(舍去)综上所述,k的值为1或3+.5.解:(1)直线y=﹣5x+5,x=0时,y=5∴C(0,5)y=﹣5x+5=0时,解得:x=1∴A(1,0)∵抛物线y=x2+bx+c经过A,C两点∴解得:∴抛物线解析式为y=x2﹣6x+5当y=x2﹣6x+5=0时,解得:x1=1,x2=5∴B(5,0)(2)如图1,过点M作MH⊥x轴于点H∵A(1,0),B(5,0),C(0,5)∴AB=5﹣1=4,OC=5∴S△ABC=AB•OC=×4×5=10∵点M为x轴下方抛物线上的点∴设M(m,m2﹣6m+5)(1<m<5)∴MH=|m2﹣6m+5|=﹣m2+6m﹣5∴S△ABM=AB•MH=×4(﹣m2+6m﹣5)=﹣2m2+12m﹣10=﹣2(m﹣3)2+8∴S四边形AMBC=S△ABC+S△ABM=10+[﹣2(m﹣3)2+8]=﹣2(m﹣3)2+18∴当m=3,即M(3,﹣4)时,四边形AMBC面积最大,最大面积等于18(可以直接利用点M是抛物线的顶点时,面积最大求解)(3)如图2,在x轴上取点D(4,0),连接PD、CD∴BD=5﹣4=1∵AB=4,BP=2∴∵∠PBD=∠ABP∴△PBD∽△ABP∴==,∴PD=AP∴PC+PA=PC+PD∴当点C、P、D在同一直线上时,PC+PA=PC+PD=CD最小∵CD=∴PC+PA的最小值为6.解:(1)∵A(﹣9m,0),B(m,0),∴OA=9m,OB=m,AB=10m∵AB是直径∴∠ACB=90°∴∠ACO+∠BCO=90°,且∠BCO+∠CBO=90°∴∠ACO=∠CBO,且∠AOC=∠BOC=90°∴△AOC∽△COB∴∴CO2=AO•BO=9m2,∴CO=3m∴点C(0,3m)(2)①连接CM,CF,∵CD是⊙M的切线∴MC⊥CD,且AE⊥CD∴AE∥CM,∴∠EAC=∠ACM,∵AM=CM∴∠MAC=∠MCA∴∠EAC=∠MAC,且CO⊥AO,AE⊥EC∴EC=CO,∵四边形ABCF是圆内接四边形∴∠AFC+∠ABC=180°,且∠AFC+∠EFC=180°,∴∠EFC=∠ABC,且CE=CO,∠BOC=∠E=90°∴△EFC≌△OBC(AAS)∴EF=OB②∵AO=9m,CO=3m,OB=m,∴AC==3m,BC==m,∵∠EAC=∠CAB,AC=AC,∠AEC=∠AOC=90°∴△AEC≌△AOC(AAS)∴AO=AE=9m,∵△EFC≌△OBC∴CF=BC=m,BO=EF=m,∴AF=AE﹣EF=9m﹣m=8m∴△AFC的周长=AC+AF+FC=3m+8m+m=4m+8m③∵AB=10m∴AM=CM=MB=5m,OM=4m,∵tan∠CMD=∴∴m=1∴AF=8,CE=3=OC,AE=AO=9,EF=BO=1,BM=AM=CM=5∴DM==∴BD=DM﹣MB=﹣5=∴S△CBD=×3×=,S△AFC=×8×3=12∴k=∴≤x≤4∵二次函数y=ax2﹣x+c经过原点∴c=0,∴二次函数解析式为y=ax2﹣x,∴二次函数解析式为y=ax2﹣x与x轴的交点为(0,0),(,0),对称轴为x=当a<0时,当x=时,函数y的最大值为a,∴a=a()2﹣∴a=﹣∴二次函数解析式为:y=﹣x2﹣x当a>0时,若≤时,当x=4时,函数y的最大值为a,∴a=16a﹣4∴a=∴二次函数解析式为:y=x2﹣x若时,当x=时,函数y的最大值为a,∴a=a()2﹣∴a=﹣(不合题意舍去)综上所述:二次函数解析式为:y=x2﹣x或y=﹣x2﹣x7.解:(1)∵抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(﹣3,0),B(1,0)两点,∴,∴,∴抛物线的解析式为y=x2+x﹣2;(2)如图1,过点P作直线l,使l∥EF,过点O作OP'⊥l,当直线l与抛物线只有一个交点时,PH最大,等于OP',∵直线EF的解析式为y=﹣x,设直线l的解析式为y=﹣x+m①,∵抛物线的解析式为y=x2+x﹣2②,联立①②化简得,x2+x﹣2﹣m=0,∴△=﹣4××(﹣2﹣m)=0,∴m=﹣,∴直线l的解析式为y=﹣x﹣,令y=0,则x=﹣,∴M(﹣,0),∴OM=,在Rt△OP'M中,OP'==,∴PH最大=.(3)①当∠CMB=90°时,如图2,∴BM是⊙O的切线,∵⊙C半径为1,B(1,0),∴BM2∥y轴,∴∠CBM2=∠BCO,M2(1,﹣2),∴BM2=2,∵BM1与BM2是⊙C的切线,∴BM1=BM2=2,∠CBM1=∠CBM2,∴∠CBM1=∠BCO,∴BD=CD,在Rt△BOD中,OD2+OB2=BD2,∴OD2+1=(2﹣OD)2,∴OD=,∴BD=,∴DM1=过点M1作M1Q⊥y轴,∴M1Q∥x轴,∴△BOD∽△M1QD,∴,∴,∴M1Q=,DQ=,∴OQ=+=,∴M1(﹣,﹣),②当∠BCM=90°时,如图3,∴∠OCM3+∠OCB=90°,∵∠OCB+∠OBC=90°,∴∠OCM3=∠OBC,在Rt△BOC中,OB=1,OC=2,∴tan∠OBC==2,∴tan∠OCM3=2,过点M3作M3H⊥y轴于H,在Rt△CHM3中,CM3=1,设CH=m,则M3H=2m,根据勾股定理得,m2+(2m)2=1,∴m=,∴M3H=2m=,OH=OC﹣CH=2﹣,∴M3(﹣,﹣2),而点M4与M3关于点C对称,∴M4(,﹣﹣2),即:满足条件的点M的坐标为(﹣,﹣)或(1,﹣2)或(﹣,﹣2)或(,﹣﹣2).8.解:(1)∵直线y=﹣x﹣4中,y=0时,x=﹣4;x=0时,y=﹣4,∴A(﹣4,0),C(0,﹣4),∵点B为AC中点,∴B(﹣2,﹣2),∵抛物线y=ax2+bx经过A、B两点,∴解得:,∴抛物线的函数关系式为y=x2+2x.(2)在抛物线上存在点P使S△ACP=2S△ACD.如图1,连接AD并延长交y轴于点F,∵y=x2+2x=(x﹣2)2﹣2,∴点B为抛物线的顶点,∵点D为点B关于x轴的对称点,∴D(﹣2,2)在抛物线的对称轴上,∴DA=DO,∠DAO=∠DOA=45°,∵OA=OC=4,∠AOC=90°,∴∠OAC=45°,∴∠DAC=∠DAO+∠OAC=90°,∴S△ACD=AC•AD,∵∠AOF=90°,∴AF为⊙D直径,即点F在⊙D上,∴AF=2AD,OF=OA=4即F(0,4),∵S△ACP=2S△ACD=2AC•AD=AC•2AD=AC•AF,∴点P在过点F且平行于直线y=﹣x﹣4的直线上,∴直线PF解析式为y=﹣x+4,∵,解得:;.∴0点P坐标为(﹣3﹣,7+)或(﹣3+,7﹣).(3)在x轴上存在点Q使∠ACQ:∠AEO=2:3.∵∠OAD=∠ODA=45°,∴∠ADO=90°,∵点E在⊙D上且不与A、O重合,∠ACQ:∠AEO=2:3.①如图2,当点E在优弧AO上时,∠AEO=∠ADO=45°,∴∠ACQ=∠AEO=30°,过点Q作QG垂直直线AC于点G,设QG=t,∴Rt△CQG中,CQ=2QG=2t,CG=QG=t.∴∠GAQ=∠OAC=45°,∴Rt△AGQ中,AG=QG=t,AQ=QG=t.i)若点Q在线段AO上时,如图2:则AC=AG+CG=t+t=4,解得:t=2﹣2,∴AQ=,∴xQ=﹣4+4﹣4=4﹣8;ii)若点Q在线段OA延长上时,如图3:则AC=CG﹣AG=t﹣t=4,解得:,∴AQ=,∴xQ=﹣4﹣(4+4)=﹣4﹣8,②当点E在劣弧AO上时,∠AEO=(360°﹣∠ADO)=135°,∴∠ACQ=∠AEO=90°.∵∠CAO=45°,△ACO是等腰直角三角形,∴Q点与A点对称,A(﹣4,0)∴xQ=4.综上所述:满足条件的点Q有三个,坐标分别为(4﹣8,0);(﹣4﹣8,0)(4,0)9.解:(1)过点D作DE⊥x轴,垂足为E,如图1所示.∵点D的坐标为(2,﹣3),∴OE=2,DE=3.∵tan∠DBA=,∴BE=2DE=6,∴OB=BE﹣OE=4,∴点B的坐标为(﹣4,0).将B(﹣4,0),D(2,﹣3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的解析式为y=﹣x2﹣x+2.(2)过点M作MF⊥x轴,垂足为F,如图2所示.当y=0时,﹣x2﹣x+2=0,解得:x1=﹣4,x2=1,∴点A的坐标为(1,0);当x=0时,y=﹣x2﹣x+2=2,∴点C的坐标为(0,2).设点M的坐标为(m,﹣m2﹣m+2)(﹣4<m<0),则点F的坐标为(m,0),∴BF=4+m,OF=﹣m,MF=﹣m2﹣m+2,OC=2,OA=1,∴S四边形BMCA=S△BMF+S梯形FMCO+S△OCA,=BF•MF+(MF+OC)•OF+OA•OC,=×(4+m)×(﹣m2﹣m+2)+×(﹣m2﹣m+2+2)×(﹣m)+×1×2,=﹣m2﹣4m+5,=﹣(m+2)2+9.∵﹣1<0,∴当m=﹣2时,S四边形BMCA取得最大值,最大值为9.(3)连接BC,如图3所示.∵==2,∠BCO=∠COA=90°,∴△BOC∽△COA,∴∠OBC=∠OCA.∵∠OBC+∠OCB=90°,∴∠OCA+∠OCB=90°=∠ACB,∴BC⊥AC.∵点B的坐标为(﹣4,0),点C的坐标为(0,2),点A的坐标为(1,0),∴直线BC的解析式为y=x+2,直线AC的解析式为y=﹣2x+2(可利用待定系数法求出).设点Q的坐标为(﹣2,n),则过点Q且垂直AC的直线的解析式为y=x+n+1.联立两直线解析式成方程组,得:,解得:,∴两直线的交点坐标为(,).依题意,得:(﹣2﹣0)2+(n﹣0)2=[﹣(﹣2)]2+(﹣n)2,整理,得:n2+3n﹣4=0,解得:n1=1,n2=﹣4,∴点Q的坐标为(﹣2,1)或(﹣2,﹣4).综上所述:在这条直线上存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆,点Q的坐标为(﹣2,1)或(﹣2,﹣4).10.解:(1)设A(m,n),∵AO=,∴m2+n2=5,∵一次函数y=2x的图象经过A点,∴n=2m,∴m2+(2m)2=5,解得m=±1,∵A在第一象限,∴m=1,∴A(1,2),∵点A在反比例函数y=(k>0)的图象上,∴k=1×2=2;(2)连接BP,由对称性得:OA=OB,∵Q是AP的中点,∴OQ=BP,∵OQ长的最大值为,∴BP长的最大值为×2=3,如图2,当BP过圆心C时,BP最长,过B作BD⊥x轴于D,∵CP=1,∴BC=2,∵B在直线y=2x上,设B(t,2t),则CD=t﹣(﹣2)=t+2,BD=﹣2t,在Rt△BCD中,由勾股定理得:BC2=CD2+BD2,∴22=(t+2)2+(﹣2t)2,t=0(舍)或﹣,∴B(﹣,﹣),∵点B在反比例函数y=(k>0)的图象上,∴k=﹣×(﹣)=;(3)∵抛物线经过点C(﹣2,0),∴4a﹣2b+c=0,又∵a+b+c=0,∴b=a,c=﹣2a,∴y=ax2+ax﹣2a=a(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 跨国企业德育与合规方案
- 餐饮供应链食材管理制度
- AI语音识别技术合作协议
- 职工核酸检测与健康管理制度
- 常德2024年04版小学英语第二单元真题试卷
- 幼儿园收费规范管理制度
- 车站候车室钢结构雨棚施工方案
- 2024-2025学年广西金太阳七市联考高三上学期摸底测试地理试题及答案
- 供热系统维护协议书
- 离婚协议书的公证与法律保障
- 超声病例讨论.ppt
- 高中语文表现手法之烘托、渲染、衬托、对比的明显区别
- 箱式变电站交接试验报告
- 泰达时代中心楼顶发光字施工方案
- LED灯具规格书中英文
- 画直线和曲线说课稿
- 论我国农村集体土地所有制度的完善-
- 不等式基本性质
- BSP螺纹执行什么标准与英制G螺纹有何区别RpRc
- 初中体育课——立定跳远教案
- 人民大学大众汽车案例-4组
评论
0/150
提交评论