




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市民办东元高级中学高二数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数f(x)=cosx+e﹣x+x2016,令f1(x)=f′(x),f2(x)=f1′(x),f3(x)=f2′(x),…,fn+1=fn′(x),则f2017(x)=()A.﹣sinx+e﹣x B.cosx﹣e﹣x C.﹣sinx﹣e﹣x D.﹣cosx+e﹣x参考答案:C【考点】63:导数的运算.【分析】利用基本初等函数:三角函数,指数函数,幂函数的导数运算法则求出各阶导数,找规律.【解答】解:f1(x)=f′(x)=﹣sinx﹣e﹣x+2016x2015f2(x)=f′1(x)=﹣cosx+e﹣x+2016×2015×x2014f3(x)=f′2(x)=sinx﹣e﹣x+2016×2015×2014x2013f4(x)=f′3(x)=cosx+e﹣x+2016×2015×2014×2013x2012…∴f2016(x)=f′2015(x)=cosx+e﹣x+2016×2015×2014×2013×…×1∴f2017(x)=﹣sinx﹣e﹣x,故选C2.近年来随着我国在教育科研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.某品牌公司一直默默拓展海外市场,在海外设了多个分支机构,现需要国内公司外派大量中青年员工.该企业为了解这两个年龄层员工是否愿意被外派工作的态度,按分层抽样的方式从中青年员工中随机调查了100位,得到数据如下表:
愿意被外派不愿意被外派合计中年员工202040青年员工402060合计6040100
由并参照附表,得到的正确结论是附表:0.100.010.0012.7066.63510.828A.在犯错误的概率不超过10%的前提下,认为“是否愿意外派与年龄有关”;B.在犯错误的概率不超过10%的前提下,认为“是否愿意外派与年龄无关”;C.有99%以上的把握认为“是否愿意外派与年龄有关”;D.有99%以上的把握认为“是否愿意外派与年龄无关”.参考答案:A【分析】由公式计算出的值,与临界值进行比较,即可得到答案。【详解】由题可得:故在犯错误的概率不超过10%的前提下,认为“是否愿意外派与年龄有关”,有90%以上的把握认为“是否愿意外派与年龄有关,所以答案选A;故答案选A【点睛】本题主要考查独立性检验,解题的关键是正确计算出的值,属于基础题。3.已知函数的图象与直线交于点P,若图象在点P处的切线与x轴交点的横坐标为,则++…+的值为()A.
B.
C.
D.参考答案:A4.如果直线沿轴负方向平移个单位再沿轴正方向平移个单位后,又回到原来的位置,那么直线的斜率是(
)
A.
B.
C.
D.参考答案:A
解析:5.设正方体的表面积为24,一个球内切于该正方体,那么这个球的体积是
(
)A.
B.
C.
D.参考答案:B略6.已知过点且与曲线相切的直线的条数有(
).A.0 B.1 C.2 D.3参考答案:C【分析】设切点为,则,由于直线经过点,可得切线的斜率,再根据导数的几何意义求出曲线在点处的切线斜率,建立关于的方程,从而可求方程.【详解】若直线与曲线切于点,则,又∵,∴,∴,解得,,∴过点与曲线相切的直线方程为或,故选:C.【点睛】本题主要考查了利用导数求曲线上过某点切线方程的斜率,求解曲线的切线的方程,其中解答中熟记利用导数的几何意义求解切线的方程是解答的关键,着重考查了运算与求解能力,属于基础题.7.(5分)函数f(x)=2x﹣sinx在(﹣∞,+∞)上() A.有最小值 B. 是减函数 C. 有最大值 D. 是增函数参考答案:A8.设是正数,且a+b=4,则下列各式中正确的一个是(
)A.
B.
C.
D.参考答案:B9.过双曲线的左焦点,作圆的切线,切点为,延长交曲线右支于点,若.则双曲线的离心率为()A.
B.C.
D.参考答案:C10..已知直线和直线,抛物线上一动点P到直线和直线的距离之和的最小值是(A)2
(B)3
(C)
(D)参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.已知向量,,.若,则____.参考答案:-212.由六个面围成的几何体,每个面都是矩形的几何体的名称.参考答案:长方体13.与点关于原点对称的点的坐标为________________参考答案:14.已知函数=,则->-2的解集为_____________.参考答案:[-2,-1)∪(0,2]15.一同学在电脑中打出如下若干个圆(图中●表示实圆,○表示空心圆):
●○●●○●●●○●●●●○●●●●●○●●●●●●○若将此若干个圆依次复制得到一系列圆,那么在前2003个圆中,有
个空心圆.参考答案:44616.曲线与直线及x轴围成的图形的面积为
.参考答案:由曲线与直线及轴围成的图形的面积为
17.抛物线上一点和焦点的距离等于,则点的坐标是 .参考答案:,
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题满分15分)如图,已知,在空间四边形中,,是的中点.(1)求证:平面⊥平面;(2)若,求几何体的体积;(3)若为△的重心,试在线段上找一点,使得∥平面.参考答案:(1)证明:∵BC=AC,E为AB的中点,∴AB⊥CE.又∵AD=BD,E为AB的中点∴AB⊥DE.∵∴AB⊥平面DCE∵AB平面ABC,∴平面CDE⊥平面ABC.(2)∵在△BDC中,DC=3,BC=5,BD=4,∴CD⊥BD,在△ADC中,DC=3,AD=BD=4,AC=BC=5,∴CD⊥AD,∵∴CD⊥平面ABD.所以线段CD的长是三棱锥C-ABD的高。又在△ADB中,DE=∴VC-ABD=(3)在AB上取一点F,使AF=2FE,则可得GF∥平面CDE取DC的中点H,连AH、EH∵G为△ADC的重心,∴G在AH上,且AG=2GH,连FG,则FG∥EH又∵FG平面CDE,EH平面CDE,∴GF∥平面CDE19.(本小题满分12分)在中,角,,的对边分别为,且.(Ⅰ)求角的大小;(Ⅱ)若,求的值.参考答案:(Ⅱ),由(Ⅰ)得:由余弦定理可知:
………9分
……………11分
……………12分20.已知函数f(x)=ax3+bx+c(a>0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,导数f/(x)的最小值为-12,求a,b,c的值.参考答案:解:由x-6x-7=0得,k=∵f(x)=ax3+bx+c,
∴f/(x)=3ax2+b
∴f/(1)=3a+b=-6
又当x=0时,f/(x)min=b=-12,∴a=2∵f(x)为奇函数,∴f(0)=0,∴c=0∴a=2,b=-12,
C=0.
【解析】略21.(本题满分10分)已知定义在上的函数的图象如右图所示(Ⅰ)写出函数的周期;(Ⅱ)确定函数的解析式.参考答案:解:(Ⅰ)----------------------5分
(Ⅱ)------------10分略22.已知关于x的一元二次函数f(x)=ax2﹣4bx+1.(1)设集合P={1,2,3}和Q={﹣1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;(2)设点(a,b)是区域内的随机点,求y=f(x)在区间[1,+∞)上是增函数的概率.参考答案:【考点】等可能事件的概率.【专题】计算题.【分析】(1)本题是一个等可能事件的概率,试验发生包含的事件是3×5,满足条件的事件是函数f(x)=ax2﹣4bx+1在区间[1,+∞)上为增函数,根据二次函数的对称轴,写出满足条件的结果,得到概率.(2)本题是一个等可能事件的概率问题,根据第一问做出的函数是增函数,得到试验发生包含的事件对应的区域和满足条件的事件对应的区域,做出面积,得到结果.【解答】解:(1)由题意知本题是一个等可能事件的概率,∵试验发生包含的事件是3×5=15,函数f(x)=ax2﹣4bx+1的图象的对称轴为,要使f(x)=ax2﹣4bx+1在区间[1,+∞)上为增函数,当且仅当a>0且,即2b≤a若a=1则b=﹣1,若a=2则b=﹣1,1;若a=3则b=﹣1,1;∴事件包含基本事件的个数是1+2+2=5∴所求事件的概率为.(2)由(Ⅰ)知当且仅当2b≤a且a>0时,函数f(x)=ax2﹣4bx+1在区是间[1,+∞)上为增函数,依条件可知试验的全部结果所构成的区域为构成所求事件的区域为三角形部分由得交点坐标为,∴所求事件的概率为.【点评】古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积、和体积、的比值得到.已知圆C:(x﹣3)2+(y﹣4)2=4,直线l1过定点A(1,0).(1)若l1与圆相切,求l1的方程;(2)若l1与圆相交于P,Q两点,线段PQ的中点为M,又l1与l2:x+2y+2=0的交点为N,判断AM?AN是否为定值,若是,则求出定值;若不是,请说明理由.【答案】【解析】【考点】直线和圆的方程的应用.【专题】综合题.【分析】(1)由直线l1与圆相切,则圆心到直线的距离等于半径,求得直线方程,注意分类讨论;(2)分别联立相应方程,求得M,N的坐标,再求AM?AN.【解答】解:(1)①若直线l1的斜率不存在,即直线x=1,符合题意.(2分)②若直线l1斜率存在,设直线l1为y=k(x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教育数据分析在医疗领域的应用前景
- 培训课件职场新人如何
- 云技术在教育的普及及伦理规范探讨
- 2025-2026(一)秋季第一学期德育工作计划:源头活水润心田百川汇海育新人
- 智慧城市规划与运营管理模式探讨
- 提升商业培训效果的游罐教学策略
- 培训课件准备好
- 抖音商户直播内容合规性检查制度
- 抖音商户直播话题标签选用制度
- 全球化背景下我国大学生跨文化交流能力培养路径与策略研究报告
- 福建省泉州市泉州实验中学2024届八上数学期末联考模拟试题含解析
- 抖音员工号申请在职证明参考模板
- 营养琼脂培养基适用性验证
- (完整)双溪课程评量表
- 第四章-康复心理学-心理评估
- 中医外治技术排版稿
- GB/T 41421-2022数字化试衣虚拟服装用术语和定义
- GB/T 4074.21-2018绕组线试验方法第21部分:耐高频脉冲电压性能
- 逆向工程技术-课件
- 基于PLC交流变频调速系统的设计 毕业设计(论文)
- 齐鲁医学健康知识-远离“三高”
评论
0/150
提交评论