版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平行线的性质34.(2023•鄂州)如图,直线AB∥CD,GE⊥EF于点E.若∠BGE=60°,则∠EFD的度数是()A.60° B.30° C.40° D.70°【答案】B【分析】过点E作AB的平行线,利用平行线的性质即可求解.【解答】解:过点E作直线HI∥AB.∵AB∥CD,AB∥HI,∴CD∥HI.∴∠BGE=∠GEH=60°,∴∠HEF=∠GEF-∠GEH=90°-60°=30°.∴∠EFD=∠HEF=30°.故选:B.【点评】本题考查了垂线及平行线的性质,正确作出辅助线是解决本题的关键.平行线的性质31.(2023•东营)如图,AB∥CD,点E在线段BC上(不与点B,C重合),连接DE.若∠D=40°,∠BED=60°,则∠B=()A.10° B.20° C.40° D.60°【答案】B【分析】利用平行线的性质及外角计算即可.【解答】解:∵∠C+∠D=∠BED=60°,∴∠C=60°-∠D=60°-40°=20°.又∵AB∥CD,∴∠B=∠C=20°.故选:B.【点评】本题简单地考查了平行线的性质,知识点比较基础,一定要掌握.32.(2023•通辽)将一副三角尺如图所示放置,其中AB∥DE,则∠CDF=105度.【答案】105.【分析】利用平行线的性质和三角尺各角的度数进行计算即可.【解答】解:∵AB∥DE,∴∠BDE=∠B=30°.∴∠CDF=180°-∠EDF-∠BDE=180°-45°-30°=105°.故答案为:105.【点评】本题主要考查平行线的性质的简单运用.另外,一定要把一副三角尺各角的度数作为常识牢记于心.平行线的性质29.(2023•泸州)如图,AB∥CD,若∠D=55°,则∠1的度数为()A.125° B.135° C.145° D.155°【考点】平行线的性质.【分析】设∠1的对顶角为∠2,由AB∥CD,利用“两直线平行,同旁内角互补”,可求出∠2的度数,再利用对顶角相等,即可得出∠1的度数.【解答】解:如图,设∠1的对顶角为∠2.∵AB∥CD,∠D=55°,∴∠2=180°﹣∠D=180°﹣55°=125°,∴∠1=125°.故选:A.【点评】本题考查了平行线的性质,牢记“两直线平行,同旁内角互补”是解题的关键.30.(2023•自贡)如图,某人沿路线A→B→C→D行走,AB与CD方向相同,∠1=128°,则∠2=()A.52° B.118° C.128° D.138°【考点】平行线的性质.【分析】依据题意,AB与CD方向相同,可得AB∥CD,从而可得解.【解答】解:由题意得,AB∥CD,∴∠2=∠1=128°.故选:C.【点评】本题主要考查了平行线的“两直线平行,内错角相等”性质,解题时需要熟练掌握,本题属于简单题.平行线的性质38.(2023•宜宾)如图,AB∥CD,且∠A=40°,∠D=24°,则∠E等于()A.40° B.32° C.24° D.16°【考点】平行线的性质;三角形的外角性质.【分析】由AB∥CD,得∠ACD=∠A=40°,而∠D=24°,故∠E=16°.【解答】解:∵AB∥CD,∴∠ACD=∠A=40°,∵∠ACD=∠D+∠E,∠D=24°,∴40°=24°+∠E,∴∠E=16°,故选:D.【点评】本题考查平行线的性质,解题的关键是掌握平行线性质和三角形一个外角等于与它不相邻的两个内角的和.平行线的性质30.(2023•凉山州)光线在不同介质中的传播速度是不同的,因此光线从水中射向空气时,要发生折射.由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,∠1=45°,∠2=120°,则∠3+∠4=()A.165° B.155° C.105° D.90°【考点】平行线的性质.【分析】由平行线的性质可得∠3=∠1=45°,∠4=60°,从而可求解.【解答】解:∵在水中平行的光线,在空气中也是平行的,∠1=45°,∠2=120°,∴∠3=∠1=45°,∵水面与杯底面平行,∴∠4=180°﹣∠2=60°,∴∠3+∠4=105°.故选:C.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质并灵活运用.31.(2023•重庆)如图,直线a,b被直线c所截,若a∥b,∠1=63°,则∠2的度数为()A.27° B.53° C.63° D.117°【考点】平行线的性质.【分析】根据平行线的性质可以得到∠1=∠2,然后根据∠1的度数,即可得到∠2的度数.【解答】解:∵a∥b,∴∠1=∠2,∵∠1=63°,∴∠2=63°,故选:C.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.32.(2023•重庆)如图,AB∥CD,AD⊥AC,若∠1=55°,则∠2的度数为()A.35° B.45° C.50° D.55°【考点】平行线的性质;垂线.【分析】根据平行线的性质,可以求得∠BAC+∠1=180°,然后根据∠1的度数和AD⊥AC,即可得到∠2的度数.【解答】解:∵AB∥CD,∴∠BAC+∠1=180°,∵∠1=55°,∴∠BAC=125°,∵AD⊥AC,∴∠CAD=90°,∴∠2=∠BAC﹣∠CAD=35°,故选:A.【点评】本题考查平行线的性质、垂线,解答本题的关键是明确题意,利用数形结合的思想解答.平行线的性质33.(2023•云南)如图,直线c与直线a、b都相交.若a∥b,∠1=35°,则∠2=()A.145° B.65° C.55° D.35°【考点】平行线的性质.菁优网版权所有【分析】由对顶角相等可得∠3=∠1=35°,再由平行线的性质求解即可.【解答】解:如图,∵∠1=35°,∴∠3=∠1=35°,∵a∥b,∴∠2=∠3=35°.故选:D.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同位角相等.平行线的性质34.(2023•岳阳)已知AB∥CD,点E在直线AB上,点F,G在直线CD上,EG⊥EF于点E,∠AEF=40°,则∠EGF的度数是()A.40° B.45° C.50° D.60°【答案】C【分析】由平角的定义可求得∠BEG=50°,再由平行线的性质即可求解.【解答】解:∵EG⊥EF,∴∠FEG=90°,∵∠AEF+∠FEG+∠BEG=180°,∠AEF=40°,∴∠BEF=180°﹣∠AEF﹣∠FEG=50°,∵AB∥CD,∴∠EGF=∠BEG=50°.故选:C.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,内错角相等.35.(2023•邵阳)如图,直线a,b被直线c所截,已知a∥b,∠1=50°,则∠2的大小为()A.40° B.50° C.70° D.130°【答案】B【分析】根据对顶角相等,可得∠1=∠3,又由平行线的性质,求得∠2的度数.【解答】解:如图所示:∵a∥b,∴∠2=∠3,∵∠1=∠3,∠1=50°,∴∠1=∠2=50°.故选:B.【点评】此题考查了平行线的性质与对顶角的性质,注意掌握两直线平行,同位角相等是解此题的关键.36.(2023•陕西)如图,l∥AB,∠A=2∠B.若∠1=108°,则∠2的度数为()A.36° B.46° C.72° D.82°【答案】A【分析】由对顶角相等可得∠3=∠1=108°,再由平行线的性质可求得∠A=72°,∠B=∠2,结合已知条件可求得∠B,即可求解.【解答】解:如图,∵∠1=108°,∴∠3=∠1=108°,∵l∥AB,∴∠3+∠A=180°,∠2=∠B,∴∠A=180°﹣∠3=72°,∵∠A=2∠B,∴∠B=36°,∴∠2=36°.故选:A.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补.平行线的性质34.(2023•随州)如图,直线l1∥l2,直线l与l1,l2相交,若图中∠1=60°,则∠2为()A.30° B.60° C.120° D.150°【答案】C【分析】直接根据平行线的性质即可得出结论.【解答】解:∵直线l1∥l2,∠1=60°,∴∠2=180°﹣∠1=180°﹣60°=120°.故选:C.【点评】本题考查的是平行线的性质,熟知两直线平行,同旁内角互补是解题的关键.平行线的性质35.(2023•湖北)如图,Rt△ABC的直角顶点A在直线a上,斜边BC在直线b上,若a∥b,∠1=55°,则∠2=()A.55° B.45° C.35° D.25°【答案】C【分析】由平行线的性质可得∠ABC=∠1=55°,再由三角形的内角和即可求∠2.【解答】解:∵a∥b,∠1=55°,∴∠ABC=∠1=55°,∵∠BAC=90°,∴∠2=180°﹣∠ABC﹣∠BAC=35°.故选:C.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,内错角相等.36.(2023•宜昌)如图,小颖按如下方式操作直尺和含30°角的三角尺,依次画出了直线a,b,c.如果∠1=70°,则∠2的度数为()A.110° B.70° C.40° D.30°【答案】C【分析】根据平行线的性质得到∠3=∠1=70°,三角形的外角的性质得到∠3=∠4+∠5=70°,由∠2=∠5即可解答.【解答】解:如图,由题意得,∠4=30°,a∥b,∴∠3=∠1=70°,∵∠3=∠4+∠5=70°,∴∠5=40°,∴∠2=∠5=40°,故选:C.【点评】本题考查了平行线的性质,对顶角的性质,三角形外角定理,掌握平行线的性质是解题关键.37.(2023•山西)如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O的光线相交于点P,点F为焦点.若∠1=155°,∠2=30°,则∠3的度数为()A.45° B.50° C.55° D.60°【答案】C【分析】由平行线的性质求出∠OFB=25°,由对顶角的性质得到∠POF=∠2=30°,由三角形外角的性质即可求出∠3的度数.【解答】解:∵AB∥OF,∴∠1+∠OFB=180°,∵∠1=155°,∴∠OFB=25°,∵∠POF=∠2=30°,∴∠3=∠POF+∠OFB=30°+25°=55°.故选:C.【点评】本题考查平行线的性质,三角形外角的性质,对顶角的性质,关键是由平行线的性质求出∠OFB的度数,由对顶角的性质得到∠POF的度数,由三角形外角的性质即可解决问题.平行线的性质29.(2023•杭州)如图,点D,E分别在△ABC的边AB,AC上,且DE∥BC,点F在线段BC的延长线上.若∠ADE=28°,∠ACF=118°,则∠A=90°.【答案】90°.【分析】由平行线的性质得到∠B=∠ADE=28°,由三角形外角的性质得到∠A=∠ACF﹣∠B=118°﹣28°=90°.【解答】解:∵DE∥BC,∴∠B=∠ADE=28°,∵∠ACF=∠A+∠B,∴∠A=∠ACF﹣∠B=118°﹣28°=90°.故答案为:90°.【点评】本题考查平行线的性质,三角形外角的性质,关键是由平行线的性质求出∠B的度数,由三角形外角的性质即可求出∠A的度数.30.(2023•永州)如图,AB∥CD,BC∥ED,∠B=80,则∠D=100度.【答案】100.【分析】首先由AB∥CD得出∠BCD=∠B=80°,再由BC∥ED得出∠D+∠BCD=180°,据此可得出此题的答案.【解答】解:∵AB∥CD,∠B=80,∴∠BCD=∠B=80°,∵BC∥ED,∴∠D+∠BCD=180°,∴∠D=100°.故答案为:100.【点评】此题主要考查了平行线的判定和性质,解答此题的关键是准确识图,熟练掌握平行线的判定及性质:两直线平行,同位角相等,两直线平行,内错角相等,两直线平行,同旁内角互补.平行线的性质34.(2023•深圳)如图为商场某品牌椅子的侧面图,∠DEF=120°,DE与地面平行,∠ABD=50°,则∠ACB=()A.70° B.65° C.60° D.50°【答案】A【分析】由平行线的性质可得∠D=∠ABD=50°,再利用三角形的外角性质可求得∠DCE的度数,结合对顶角相等即可求∠ACB的度数.【解答】解:∵DE∥AB,∠ABD=50°,∴∠D=∠ABD=50°,∵∠DEF=120°,且∠DEF是△DCE的外角,∴∠DCE=∠DEF﹣∠D=70°,∴∠ACB=∠DCE=70°.故选:A.【点评】本题主要考查平行线的性质,三角形的外角性质,解答的关键是熟记平行线的性质并灵活运用.35.(2023•济宁)如图,a,b是直尺的两边,a∥b,把三角板的直角顶点放在直尺的b边上,若∠1=35°,则∠2的度数是()A.65° B.55° C.45° D.35°【答案】B【分析】利用平角的定义及角的和差关系,先求出∠3,再利用平行线的性质求出∠2.【解答】解:∵∠E=90°,∠CED是平角,∠1=35°,∵a∥b,∴∠1=∠3=35°.∵∠BEC=180°﹣∠E﹣∠3=180°﹣90°﹣35°=55°故选:B.【点评】本题主要考查了平行线的性质,根据平角的定义求出∠3的度数是解决本题的关键.36.(2023•齐齐哈尔)如图,直线l1∥l2,分别与直线l交于点A,B,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=45°,则∠2的度数是()A.135° B.105° C.95° D.75°【答案】B【分析】依据l1∥l2,即可得到∠1=∠3=45°,再根据∠4=30°,即可得出从∠2=180°﹣∠3﹣∠4=105°.【解答】解:如图,∵l1∥l2,∴∠1=∠3=45°,又∵∠4=30°,∴∠2=180°﹣∠3﹣∠4=180°﹣45°﹣30°=105°,故选:B.【点评】此题主要考查了平行线的性质,三角板的特征,角度的计算,解本题的关键是利用平行线的性质.平行线的性质20.(2023•张家界)如图,已知直线AB∥CD,EG平分∠BEF,∠1=40°,则∠2的度数是()A.70° B.50° C.40° D.140°【答案】A【分析】由平角的定义可得∠BEF=140°,由角平分线的定义可得∠BEG=∠FEG=70°,再利用两直线平行,内错角相等即可求解.【解答】解:∵∠1=40°,∴∠BEF=180°﹣∠1=180°﹣40°=140°,∵EG平分∠BEF,∴∠BEG=∠FEG=70°,∵AB∥CD,∴∠2=∠BEG=70°.故选:A.【点评】本题主要考查平角的定义、角平分线的定义、平行线的性质,熟练掌握角平分线的定义和平行线的性质是解题关键.21.(2023•武汉)如图,在四边形ABCD中,AD∥BC,∠B=∠D,点E在BA的延长线上,连接CE.(1)求证:∠E=∠ECD;(2)若∠E=60°,CE平分∠BCD,直接写出△BCE的形状.【答案】(1)证明见解析;(2)△BCE是等边三角形,理由见解析.【分析】(1)由平行线的性质得到∠EAD=∠B.而∠B=∠D,因此∠EAD=∠D.推出BE∥CD,得到∠E=∠ECD.(2)由平行线的性质,角平分线定义得到∠BCE=60°,由三角形内角和定理得到∠B=60°,即可推出△BCE是等边三角形.【解答】(1)证明:∵AD∥BC,∴∠EAD=∠B,∵∠B=∠D,∴∠EAD=∠D,∴BE∥CD,∴∠E=∠ECD.(2)解:△BCE是等边三角形,理由如下:∵CE平分∠BCD,∴∠BCE=∠ECD,∵EB∥CD,∴∠ECD=∠E=60°,∴∠B=180°﹣∠E﹣∠BCE=60°,∴∠B=∠BCE=∠E,∴△BCE是等边三角形.【点评】本题考查平行线的性质和判定,等边三角形的判定,关键是由平行线的性质推出BE∥CD.平行线的性质33.(2023•广东)如图,街道AB与CD平行,拐角∠ABC=137°,则拐角∠BCD=()A.43° B.53° C.107° D.137°【答案】D【分析】由平行线的性质即可求解.【解答】解:∵AB∥CD,∴∠ABC=∠BCD=137°,故选:D.【点评】本题考查平行线的性质,熟练掌握性质解解题关键.34.(2023•广西)如图,一条公路两次转弯后又回到与原来相同的方向,∠A=130°,那么∠B的度数是()A.160° B.150° C.140° D.130°【答案】D【分析】由平行线的性质,即可得到∠B=∠A=130°.【解答】解:∵公路两次转弯后又回到与原来相同的方向,∴AC∥BD,∴∠B=∠A=130°.故选:D.【点评】本题考查平行线的性质,关键是由题意得到AC∥BD.35.(2023•荆州)如图所示的“箭头”图形中,AB∥CD,∠B=∠D=80°,∠E=∠F=47°,则图中∠G的度数是()A.80° B.76° C.66° D.56°【答案】C【分析】延长AB交EG于M,延长CD交FG于N,过G作GK∥AB,得到GK∥CD,推出∠KGM=∠EMB,∠KGN=∠DNF,得到∠EGF=∠EMB+∠DNF,由三角形外角的性质得到∠EMB=33°,∠DNF=33°,即可求出∠EGF的度数.【解答】解:延长AB交EG于M,延长CD交FG于N,过G作GK∥AB,∵AB∥CD,∴GK∥CD,∴∠KGM=∠EMB,∠KGN=∠DNF,∴∠KGM+∠KGN=∠EMB+∠DNF,∴∠EGF=∠EMB+∠DNF,∵∠ABE=80°,∠E=47°,∴∠EMB=∠ABE﹣∠E=33°,同理:∠DNF=33°,∴∠EGF=∠EMB+∠DNF=33°+33°=66°.故选:C.【点评】本题考查平行线的性质,三角形外角的性质,关键是通过作辅助线,由平行线的性质,得到∠EGF=∠EMB+∠DNF,由三角形外角的性质求出∠EMB、∠DNF的度数,即可解决问题.平行线的性质29.(2023•大连)如图,直线AB∥CD,∠ABE=45°,∠D=20°,则∠E的度数为()A.20° B.25° C.30° D.35°【答案】B【分析】由平行线的性质可得∠ABE=∠BCD,从而求出∠DCE,再根据三角形的内角和即可求解.【解答】解:∵AB∥CD,∴∠ABE=∠BCD=45°,∴∠DCE=135°,由三角形的内角和可得∠E=180°﹣135°﹣20°=25°.故选:B.【点评】本题考查平行线的性质和三角形的内角和定理,熟练掌握性质是解题关键.平行线的性质35.(2023•菏泽)一把直尺和一个含30°角的直角三角板按如图方式放置,若∠1=20°,则∠2=()A.30° B.40° C.50° D.60°【答案】B【分析】由平行线的性质可得∠3=∠1=20°,从而可求∠2.【解答】解:如图,由题意得:∠CAD=60°,∵AB∥DE,∠1=20°,∴∠3=∠1=20°,∴∠2=∠CAD﹣∠3=40°.故选:B.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版食品加工厂与超市供应链销售合同范本3篇
- 二零二五年度公墓墓园绿色殡葬设施与设备采购合同3篇
- 2024泰州体育产业员工劳动合同模板3篇
- 二零二五年度保安行业自律联盟聘用协议3篇
- 2024年中国青蛙蜡烛市场调查研究报告
- 2024年中国隔声室市场调查研究报告
- 福建卫生职业技术学院《控制工程基础A》2023-2024学年第一学期期末试卷
- 福建体育职业技术学院《团队建设与管理》2023-2024学年第一学期期末试卷
- 二零二五年度人工智能技术研发投资合同3篇
- 二零二五年国际科技创新周活动组织合同3篇
- 教育部校企合作办法
- “技能兴威”第一届威海市职业技能大赛农产品食品检验员(海洋食品产业链)赛项规程
- 幼儿园故事绘本《卖火柴的小女孩儿》课件
- 中央2024年国家药品监督管理局中国食品药品检定研究院招聘笔试历年典型考题及考点附答案解析
- 小学语文四年级上册单元作业整体设计案例
- DB32-T 4752-2024 一体化污水处理设备通.用技术要求
- 2024年新高考Ⅰ卷作文审题立意及写作指导+课件
- 2024年山东临沂市恒源热力集团限公司高校毕业生招聘9人重点基础提升难、易点模拟试题(共500题)附带答案详解
- 2024年房屋顶账协议模板(二篇)
- 美国史智慧树知到期末考试答案章节答案2024年东北师范大学
- 售后服务方案及运维方案
评论
0/150
提交评论