2024届吉林省吉林市第十区四校联考中考数学模拟预测题含解析_第1页
2024届吉林省吉林市第十区四校联考中考数学模拟预测题含解析_第2页
2024届吉林省吉林市第十区四校联考中考数学模拟预测题含解析_第3页
2024届吉林省吉林市第十区四校联考中考数学模拟预测题含解析_第4页
2024届吉林省吉林市第十区四校联考中考数学模拟预测题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届吉林省吉林市第十区四校联考中考数学模拟预测题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是()A. B. C. D.2.用尺现作图的方法在一个平行四边形内作菱形,下列作法错误的是()A. B. C. D.3.下列计算正确的是()A.2x﹣x=1 B.x2•x3=x6C.(m﹣n)2=m2﹣n2 D.(﹣xy3)2=x2y64.若0<m<2,则关于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情况是()A.无实数根B.有两个正根C.有两个根,且都大于﹣3mD.有两个根,其中一根大于﹣m5.如图,已知▱ABCD中,E是边AD的中点,BE交对角线AC于点F,那么S△AFE:S四边形FCDE为()A.1:3 B.1:4 C.1:5 D.1:66.下列式子成立的有()个①﹣的倒数是﹣2②(﹣2a2)3=﹣8a5③()=﹣2④方程x2﹣3x+1=0有两个不等的实数根A.1 B.2 C.3 D.47.在解方程-1=时,两边同时乘6,去分母后,正确的是()A.3x-1-6=2(3x+1) B.(x-1)-1=2(x+1)C.3(x-1)-1=2(3x+1) D.3(x-1)-6=2(3x+1)8.如图,在射线AB上顺次取两点C,D,使AC=CD=1,以CD为边作矩形CDEF,DE=2,将射线AB绕点A沿逆时针方向旋转,旋转角记为α(其中0°<α<45°),旋转后记作射线AB′,射线AB′分别交矩形CDEF的边CF,DE于点G,H.若CG=x,EH=y,则下列函数图象中,能反映y与x之间关系的是()A. B. C. D.9.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是()A.正方体 B.球 C.圆锥 D.圆柱体10.由6个大小相同的正方体搭成的几何体如图所示,比较它的正视图、左视图和俯视图的面积,则()A.三个视图的面积一样大 B.主视图的面积最小C.左视图的面积最小 D.俯视图的面积最小二、填空题(本大题共6个小题,每小题3分,共18分)11.若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为.12.观察下列图形:它们是按一定的规律排列的,依照此规律,第n个图形共有___个★.13.长、宽分别为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为_____.14.分解因式:=____15.估计无理数在连续整数___与____之间.16.如图,在△ABC中,∠C=∠ABC,BE⊥AC,垂足为点E,△BDE是等边三角形,若AD=4,则线段BE的长为______.三、解答题(共8题,共72分)17.(8分)如图,内接于,,的延长线交于点.(1)求证:平分;(2)若,,求和的长.18.(8分)如图,海中有一个小岛A,该岛四周11海里范围内有暗礁.有一货轮在海面上由西向正东方向航行,到达B处时它在小岛南偏西60°的方向上,再往正东方向行驶10海里后恰好到达小岛南偏西45°方向上的点C处.问:如果货轮继续向正东方向航行,是否会有触礁的危险?(参考数据:≈1.41,≈1.73)19.(8分)化简:.20.(8分)如图,在等边△ABC中,点D是AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC.21.(8分)在矩形ABCD中,AD=2AB,E是AD的中点,一块三角板的直角顶点与点E重合,两直角边与AB,BC分别交于点M,N,求证:BM=CN.22.(10分)已知:如图,在△ABC中,AB=13,AC=8,cos∠BAC=,BD⊥AC,垂足为点D,E是BD的中点,联结AE并延长,交边BC于点F.(1)求∠EAD的余切值;(2)求的值.23.(12分)如图,建筑物BC上有一旗杆AB,从与BC相距40m的D处观测旗杆顶部A的仰角为50°,观测旗杆底部B的仰角为45°,求旗杆AB的高度.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)24.如图,直线l切⊙O于点A,点P为直线l上一点,直线PO交⊙O于点C、B,点D在线段AP上,连接DB,且AD=DB.(1)求证:DB为⊙O的切线;(2)若AD=1,PB=BO,求弦AC的长.

参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】根据轴对称图形的概念求解.解:根据轴对称图形的概念可知:B,C,D是轴对称图形,A不是轴对称图形,故选A.“点睛”本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2、A【解析】

根据菱形的判定方法一一判定即可【详解】作的是角平分线,只能说明四边形ABCD是平行四边形,故A符合题意B、作的是连接AC,分别做两个角与已知角∠CAD、∠ACB相等的角,即∠BAC=∠DAC,∠ACB=∠ACD,能得到AB=BC,AD=CD,又AB∥CD,所以四边形ABCD为菱形,B不符合题意C、由辅助线可知AD=AB=BC,又AD∥BC,所以四边形ABCD为菱形,C不符合题意D、作的是BD垂直平分线,由平行四边形中心对称性质可知AC与BD互相平分且垂直,得到四边形ABCD是菱形,D不符合题意故选A【点睛】本题考查平行四边形的判定,能理解每个图的作法是本题解题关键3、D【解析】

根据合并同类项的法则,积的乘方,完全平方公式,同底数幂的乘法的性质,对各选项分析判断后利用排除法求解.【详解】解:A、2x-x=x,错误;B、x2•x3=x5,错误;C、(m-n)2=m2-2mn+n2,错误;D、(-xy3)2=x2y6,正确;故选D.【点睛】考查了整式的运算能力,对于相关的整式运算法则要求学生很熟练,才能正确求出结果.4、A【解析】

先整理为一般形式,用含m的式子表示出根的判别式△,再结合已知条件判断△的取值范围即可.【详解】方程整理为,△,∵,∴,∴△,∴方程没有实数根,故选A.【点睛】本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.5、C【解析】

根据AE∥BC,E为AD中点,找到AF与FC的比,则可知△AEF面积与△FCE面积的比,同时因为△DEC面积=△AEC面积,则可知四边形FCDE面积与△AEF面积之间的关系.【详解】解:连接CE,∵AE∥BC,E为AD中点,

∴.

∴△FEC面积是△AEF面积的2倍.

设△AEF面积为x,则△AEC面积为3x,

∵E为AD中点,

∴△DEC面积=△AEC面积=3x.

∴四边形FCDE面积为1x,

所以S△AFE:S四边形FCDE为1:1.

故选:C.【点睛】本题考查相似三角形的判定和性质、平行四边形的性质,解题关键是通过线段的比得到三角形面积的关系.6、B【解析】

根据倒数的定义,幂的乘方、二次根式的混合运算法则以及根的判别式进行判断.【详解】解:①﹣的倒数是﹣2,故正确;②(﹣2a2)3=﹣8a6,故错误;③(-)=﹣2,故错误;④因为△=(﹣3)2﹣4×1×1=5>0,所以方程x2﹣3x+1=0有两个不等的实数根,故正确.故选B.【点睛】考查了倒数的定义,幂的乘方、二次根式的混合运算法则以及根的判别式,属于比较基础的题目,熟记计算法则即可解答.7、D【解析】解:,∴3(x﹣1)﹣6=2(3x+1),故选D.点睛:本题考查了等式的性质,解题的关键是正确理解等式的性质,本题属于基础题型.8、D【解析】∵四边形CDEF是矩形,∴CF∥DE,∴△ACG∽△ADH,∴,∵AC=CD=1,∴AD=2,∴,∴DH=2x,∵DE=2,∴y=2﹣2x,∵0°<α<45°,∴0<x<1,故选D.【点睛】本题主要考查了旋转、相似等知识,解题的关键是根据已知得出△ACG∽△ADH.9、D【解析】

本题中,圆柱的俯视图是个圆,可以堵住圆形空洞,它的正视图和左视图是个矩形,可以堵住方形空洞.【详解】根据三视图的知识来解答.圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱是最佳选项.故选D.【点睛】此题考查立体图形,本题将立体图形的三视图运用到了实际中,只要弄清楚了立体图形的三视图,解决这类问题其实并不难.10、C【解析】试题分析:根据三视图的意义,可知正视图由5个面,左视图有3个面,俯视图有4个面,故可知主视图的面积最大.故选C考点:三视图二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】试题分析:先求出m2﹣2m的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解.解:由m2﹣2m﹣1=0得m2﹣2m=1,所以,2m2﹣4m+3=2(m2﹣2m)+3=2×1+3=1.故答案为1.考点:代数式求值.12、【解析】

分别求出第1个、第2个、第3个、第4个图形中★的个数,得到第5个图形中★的个数,进而找到规律,得出第n个图形中★的个数,即可求解.【详解】第1个图形中有1+3×1=4个★,

第2个图形中有1+3×2=7个★,

第3个图形中有1+3×3=10个★,

第4个图形中有1+3×4=13个★,

第5个图形中有1+3×5=16个★,

第n个图形中有1+3×n=(3n+1)个★.故答案是:1+3n.【点睛】考查了规律型:图形的变化类;根据图形中变化的量和n的关系与不变的量得到图形中★的个数与n的关系是解决本题的关键.13、1.【解析】

由周长和面积可分别求得a+b和ab的值,再利用因式分解把所求代数式可化为ab(a+b),代入可求得答案【详解】∵长、宽分别为a、b的矩形,它的周长为14,面积为10,

∴a+b==7,ab=10,

∴a2b+ab2=ab(a+b)=10×7=1,

故答案为:1.【点睛】本题主要考查因式分解的应用,把所求代数式化为ab(a+b)是解题的关键.14、x(y+2)(y-2)【解析】

原式提取x,再利用平方差公式分解即可.【详解】原式=x(y2-4)=x(y+2)(y-2),故答案为x(y+2)(y-2).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15、34【解析】

先找到与11相邻的平方数9和16,求出算术平方根即可解题.【详解】解:∵,∴,∴无理数在连续整数3与4之间.【点睛】本题考查了无理数的估值,属于简单题,熟记平方数是解题关键.16、1【解析】

本题首先由等边三角形的性质及垂直定义得到∠DBE=60°,∠BEC=90°,再根据等腰三角形的性质可以得出∠EBC=∠ABC-60°=∠C-60°,最后根据三角形内角和定理得出关系式∠C-60°+∠C=90°解出∠C,推出AD=DE,于是得到结论.【详解】∵△BDE是正三角形,∴∠DBE=60°;∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC,则∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°;∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,解得∠C=75°,∴∠ABC=75°,∴∠A=30°,∵∠AED=90°-∠DEB=30°,∴∠A=∠AED,∴DE=AD=1,∴BE=DE=1,故答案为:1.【点睛】本题主要考查等腰三角形的性质及等边三角形的性质及垂直定义,解题的关键是根据三角形内角和定理列出符合题意的简易方程,从而求出结果.三、解答题(共8题,共72分)17、(1)证明见解析;(2)AC=,CD=,【解析】分析:(1)延长AO交BC于H,连接BO,证明A、O在线段BC的垂直平分线上,得出AO⊥BC,再由等腰三角形的性质即可得出结论;(2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径,由圆周角定理得出∠EBC=90°,∠E=∠BAC,得出sinE=sin∠BAC,求出CE=BC=10,由勾股定理求出BE=8,证出BE∥OA,得出,求出OD=,得出CD=,而BE∥OA,由三角形中位线定理得出OH=BE=4,CH=BC=3,在Rt△ACH中,由勾股定理求出AC的长即可.本题解析:解:(1)证明:延长AO交BC于H,连接BO.∵AB=AC,OB=OC,∴A,O在线段BC的垂直平分线上.∴AO⊥BC.又∵AB=AC,∴AO平分∠BAC.(2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径.∴∠EBC=90°,BC⊥BE.∵∠E=∠BAC,∴sinE=sin∠BAC.∴=.∴CE=BC=10.∴BE==8,OA=OE=CE=5.∵AH⊥BC,∴BE∥OA.∴=,即=,解得OD=.∴CD=5+=.∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位线.∴OH=BE=4,CH=BC=3.∴AH=5+4=9.在Rt△ACH中,AC===3.点睛:本题考查了等腰三角形的判定与性质、三角函数及圆的有关计算,(1)中由三线合一定理求解是解题的关键,(2)中由圆周角定理得出∠EBC=90°,∠E=∠BAC,再利用三角函数及三角形中位线定理求出AC即可,本题综合性强,有一定难度.18、不会有触礁的危险,理由见解析.【解析】分析:作AH⊥BC,由∠CAH=45°,可设AH=CH=x,根据可得关于x的方程,解之可得.详解:过点A作AH⊥BC,垂足为点H.由题意,得∠BAH=60°,∠CAH=45°,BC=1.设AH=x,则CH=x.在Rt△ABH中,∵,解得:.∵13.65>11,∴货轮继续向正东方向航行,不会有触礁的危险.点睛:本题考查了解直角三角形的应用﹣方向角问题,解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.19、【解析】

原式第一项利用完全平方公式化简,第二项利用单项式乘多项式法则计算,去括号合并即可得到结果.【详解】解:原式.20、见解析【解析】试题分析:根据等边三角形的性质得出AC=BC,∠B=∠ACB=60°,根据旋转的性质得出CD=CE,∠DCE=60°,求出∠BCD=∠ACE,根据SAS推出△BCD≌△ACE,根据全等得出∠EAC=∠B=60°,求出∠EAC=∠ACB,根据平行线的判定得出即可.试题解析:∵△ABC是等边三角形,∴AC=BC,∠B=∠ACB=60°,∵线段CD绕点C顺时针旋转60°得到CE,∴CD=CE,∠DCE=60°,∴∠DCE=∠ACB,即∠BCD+∠DCA=∠DCA+∠ACE,∴∠BCD=∠ACE,在△BCD与△ACE中,,

∴△BCD≌△ACE,∴∠EAC=∠B=60°,∴∠EAC=∠ACB,∴AE∥BC.21、证明见解析.【解析】试题分析:作于点F,然后证明≌,从而求出所所以BM与CN的长度相等.试题解析:在矩形ABCD中,AD=2AB,E是AD的中点,作EF⊥BC于点F,则有AB=AE=EF=FC,∴∠AEM=∠FEN,在Rt△AME和Rt△FNE中,∵E为AB的中点,∴AB=CF,∠AEM=∠FEN,AE=EF,∠MAE=∠NFE,∴Rt△AME≌Rt△FNE,∴AM=FN,∴MB=CN.22、(1)∠EAD的余切值为;(2)=.【解析】

(1)在Rt△ADB中,根据AB=13,cos∠BAC=,求出AD的长,由勾股定理求出BD的长,进而可求出DE的长,然后根据余切的定义求∠EAD的余切即可;(2)过D作DG∥AF交BC于G,由平行线分线段成比例定理可得CD:AD=CG:FG=3:5,从而可设CD=3x,AD=5x,再由EF∥DG,BE=ED,可知BF=FG=5x,然后可求BF:CF的值.【详解】(1)∵BD⊥AC,∴∠ADE=90°,Rt△ADB中,AB=13,cos∠BAC=,∴AD=5,由勾股定理得:BD=12,∵E是BD的中点,∴E

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论