2024年初中升学考试专题复习数学总复习(按知识点分类)因式分解的应用_第1页
2024年初中升学考试专题复习数学总复习(按知识点分类)因式分解的应用_第2页
2024年初中升学考试专题复习数学总复习(按知识点分类)因式分解的应用_第3页
2024年初中升学考试专题复习数学总复习(按知识点分类)因式分解的应用_第4页
2024年初中升学考试专题复习数学总复习(按知识点分类)因式分解的应用_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

因式分解的应用1.(2023•成都)定义:如果一个正整数能表示为两个正整数m,n的平方差,且m﹣n>1,则称这个正整数为“智慧优数”.例如,16=52﹣32,16就是一个智慧优数,可以利用m2﹣n2=(m+n)(m﹣n)进行研究.若将智慧优数从小到大排列,则第3个智慧优数是15;第23个智慧优数是57.【考点】因式分解的应用;一元一次不等式的整数解.【分析】根据新定义m2﹣n2,可以分别列出m2和n2的值,进而即可求解.【解答】解:根据题意,且m﹣n>1,当m=3,n=1,则第1个智慧优数为:32﹣12=8,当m=4,n=2,则第2个智慧优数为:42﹣22=12,当m=4,n=1,则第3个智慧优数为:42﹣12=15.正整数的平方分别为:1,4,9,16,25,36,49,64,81.当m=5,n=3,则第3个智慧优数为:52﹣32=16,当m=5,n=2,则第3个智慧优数为:52﹣22=21,当m=5,n=1,则第3个智慧优数为:52﹣12=24,以此类推,当m=6时,有4个智慧优数,同理m=7时有5个,m=8时,有6个,1+2+3+4+5+6=21,又两数之间的差越小,平方越小,所以后面也有智慧优数比较小的第22个智慧优数,当m=9时,n=5,第22个智慧优数为:92﹣52=81﹣25=56,第23个智慧优数,当m=11时,n=8,第23个智慧优数为:112﹣82=121﹣64=57,故答案为:15,57.【点评】本题考查新定义下智慧优数的计算和分类,根据规律计算求解,解题的关键是能有分类进行求解.2.(2023•凉山州)已知x2﹣2x﹣1=0,则3x3﹣10x2+5x+2027的值等于2023.【考点】因式分解的应用.【分析】由x2﹣2x﹣1=0,得x2﹣2x=1,将所求式子变形为3x(x2﹣2x)﹣4(x2﹣2x)﹣3x+2027,再整体代入计算即可.【解答】解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,∴3x3﹣10x2+5x+2027=3x(x2﹣2x)﹣4(x2﹣2x)﹣3x+2027=3x×1﹣4×1﹣3x+2027=3x﹣4﹣3x+2027=2023,故答案为:2023.【点评】本题考查因式分解的应用,解题的关键是整体代入思想的应用.因式分解的应用13.(2023•河北)若k为任意整数,则(2k+3)2﹣4k2的值总能()A.被2整除 B.被3整除 C.被5整除 D.被7整除【答案】B【分析】先根据完全平方公式进行计算,再合并同类项,分解因式后再逐个判断即可.【解答】解:(2k+3)2﹣4k2=4k2+12k+9﹣4k2=12k+9=3(4k+3),∵k为任意整数,∴(2k+3)2﹣4k2的值总能被3整除,故选:B.【点评】本题考查了因式分解的应用,能求出(2k+3)2﹣4k2=3(4k+3)是解此题的关键.因式分解的应用17.(2023•十堰)若x+y=3,xy=2,则x2y+xy2的值是6.【答案】6【分析】利用提公因式法,把原式中公因式xy提出,代入数据计算即可.【解答】解:∵x+y=3,xy=2,∴x2y+xy2=xy(x+y)=2×3=6,故答案为:6.【点评】本题考查了解因式的应用中的整体思想,提公因式xy,出现两个整体xy、x+y是关键,代入数据计算即可.因式分解的应用13.(2023•深圳)已知实数a,b,满足a+b=6,ab=7,则a2b+ab2的值为42.【答案】42.【分析】利用因式分解得到ab(a+b),然后利用整体代入的方法计算.【解答】解:∵a+b=6,ab=7,∴a2b+ab2=ab(a+b)=7×6=42.故答案为:42.【点评】本题考查了因式分解.14.(2023•济宁)已知实数m满足m2﹣m﹣1=0,则2m3﹣3m2﹣m+9=8.【答案】8.【分析】由已知条件可得m2﹣m=1,将2m3﹣3m2﹣m+9先变形整理得2m(m2﹣m)﹣m2﹣m+9,然后将m2﹣m=1代入整理可得﹣(m2﹣m)+9,再将m2﹣m=1代入运算即可.【解答】解:∵m2﹣m﹣1=0,∴m2﹣m=1,∴2m3﹣3m2﹣m+9=(2m3﹣2m2)﹣m2﹣m+9=2m(m2﹣m)﹣m2﹣m+9=2m﹣m2﹣m+9=﹣m2+m+9=﹣(m2﹣m)+9=﹣1+9=8,故答案为:8.【点评】本题考查因式分解的应用及代数式求值,将代数式拆项并因式分解得2m(m2﹣m)﹣m2﹣m+9是解题的关键.因式分解的应用14.(2023•嘉兴、舟山)一个多项式,把它因式分解后有一个因式为(x+1),请你写出一个符合条件的多项式:x2﹣1(答案不唯一)..【考点】因式分解的应用.【分析】根据题意,可以写出分解因式中含有(x+1)的一个多项式,本题答案不唯一,符合

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论