




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届贵州省湄潭县中考数学对点突破模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2016福建省莆田市)如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定△POC≌△POD的选项是()A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD2.如图,直线a∥b,∠ABC的顶点B在直线a上,两边分别交b于A,C两点,若∠ABC=90°,∠1=40°,则∠2的度数为()A.30° B.40° C.50° D.60°3.已知二次函数y=x2+bx﹣9图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=,则该二次函数的对称轴是直线()A.x=1 B.x= C.x=﹣1 D.x=﹣4.如图是某个几何体的展开图,该几何体是()A.三棱柱 B.圆锥 C.四棱柱 D.圆柱5.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为()A.40° B.45° C.50° D.55°6.通州区大运河森林公园占地面积10700亩,是北京规模最大的滨河森林公园,将10700用科学记数法表示为()A.10.7×104 B.1.07×105 C.1.7×104 D.1.07×1047.若||=-,则一定是()A.非正数 B.正数 C.非负数 D.负数8.不等式2x﹣1<1的解集在数轴上表示正确的是()A. B.C. D.9.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为().A.50° B.40° C.30° D.25°10.下列计算正确的是()A.a6÷a2=a3 B.(﹣2)﹣1=2C.(﹣3x2)•2x3=﹣6x6 D.(π﹣3)0=111.如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A.B.C.D.12.如果,那么()A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点P的坐标为(2,2),点A,B分别在x轴,y轴的正半轴上运动,且∠APB=90°.下列结论:①PA=PB;②当OA=OB时四边形OAPB是正方形;③四边形OAPB的面积和周长都是定值;④连接OP,AB,则AB>OP.其中正确的结论是_____.(把你认为正确结论的序号都填上)14.化简的结果等于__.15.某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是_____.16.计算:(1)()2=_____;(2)=_____.17.在函数中,自变量x的取值范围是_________.18.如果关于x的方程x2+kx+34k2-3k+三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,△ABC的顶点坐标分别为A(1,3)、B(4,1)、C(1,1).在图中以点O为位似中心在原点的另一侧画出△ABC放大1倍后得到的△A1B1C1,并写出A1的坐标;请在图中画出△ABC绕点O逆时针旋转90°后得到的△A1B1C1.20.(6分)某商场同时购进甲、乙两种商品共100件,其进价和售价如下表:商品名称甲乙进价(元/件)4090售价(元/件)60120设其中甲种商品购进x件,商场售完这100件商品的总利润为y元.写出y关于x的函数关系式;该商场计划最多投入8000元用于购买这两种商品,①至少要购进多少件甲商品?②若销售完这些商品,则商场可获得的最大利润是多少元?21.(6分)如图,在中,,的垂直平分线交于,交于,射线上,并且.()求证:;()当的大小满足什么条件时,四边形是菱形?请回答并证明你的结论.22.(8分)已知关于的一元二次方程(为实数且).求证:此方程总有两个实数根;如果此方程的两个实数根都是整数,求正整数的值.23.(8分)已知a2+2a=9,求的值.24.(10分)某新建成学校举行美化绿化校园活动,九年级计划购买A,B两种花木共100棵绿化操场,其中A花木每棵50元,B花木每棵100元.(1)若购进A,B两种花木刚好用去8000元,则购买了A,B两种花木各多少棵?(2)如果购买B花木的数量不少于A花木的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用.25.(10分)如图,已知CD=CF,∠A=∠E=∠DCF=90°,求证:AD+EF=AE26.(12分)如图,已知二次函数的图象经过,两点.求这个二次函数的解析式;设该二次函数的对称轴与轴交于点,连接,,求的面积.27.(12分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC于点E,且∠A=∠ADE.求证:DE是⊙O的切线;若AD=16,DE=10,求BC的长.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】试题分析:对于A,由PC⊥OA,PD⊥OB得出∠PCO=∠PDO=90°,根据AAS判定定理可以判定△POC≌△POD;对于BOC=OD,根据SAS判定定理可以判定△POC≌△POD;对于C,∠OPC=∠OPD,根据ASA判定定理可以判定△POC≌△POD;,对于D,PC=PD,无法判定△POC≌△POD,故选D.考点:角平分线的性质;全等三角形的判定.2、C【解析】
依据平行线的性质,可得∠BAC的度数,再根据三角形内和定理,即可得到∠2的度数.【详解】解:∵a∥b,∴∠1=∠BAC=40°,又∵∠ABC=90°,∴∠2=90°−40°=50°,故选C.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.3、D【解析】
设A点坐标为(a,),则可求得B点坐标,把两点坐标代入抛物线的解析式可得到关于a和b的方程组,可求得b的值,则可求得二次函数的对称轴.【详解】解:∵A在反比例函数图象上,∴可设A点坐标为(a,).∵A、B两点关于原点对称,∴B点坐标为(﹣a,﹣).又∵A、B两点在二次函数图象上,∴代入二次函数解析式可得:,解得:或,∴二次函数对称轴为直线x=﹣.故选D.【点睛】本题主要考查二次函数的性质,待定系数法求二次函数解析式,根据条件先求得b的值是解题的关键,注意掌握关于原点对称的两点的坐标的关系.4、A【解析】
侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【详解】解:观察图形可知,这个几何体是三棱柱.
故选A.【点睛】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..5、D【解析】试题分析:如图,连接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故选D.考点:1、平行线的性质;2、圆周角定理;3等腰三角形的性质6、D【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:10700=1.07×104,
故选:D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7、A【解析】
根据绝对值的性质进行求解即可得.【详解】∵|-x|=-x,又|-x|≥1,∴-x≥1,即x≤1,即x是非正数,故选A.【点睛】本题考查了绝对值的性质,熟练掌握绝对值的性质是解题的关键.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;1的绝对值是1.8、D【解析】
先求出不等式的解集,再在数轴上表示出来即可.【详解】移项得,2x<1+1,合并同类项得,2x<2,x的系数化为1得,x<1.在数轴上表示为:.故选D.【点睛】本题考查了解一元一次不等式,熟练掌握运算法则是解题的关键.9、B【解析】
解:如图,由两直线平行,同位角相等,可求得∠3=∠1=50°,根据平角为180°可得,∠2=90°﹣50°=40°.故选B.【点睛】本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键.10、D【解析】解:A.a6÷a2=a4,故A错误;B.(﹣2)﹣1=﹣,故B错误;C.(﹣3x2)•2x3=﹣6x5,故C错;D.(π﹣3)0=1,故D正确.故选D.11、B【解析】解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=12BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=12•x•x=当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=12•(4﹣x)•x=-12、B【解析】试题分析:根据二次根式的性质,由此可知2-a≥0,解得a≤2.故选B点睛:此题主要考查了二次根式的性质,解题关键是明确被开方数的符号,然后根据性质可求解.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、①②【解析】
过P作PM⊥y轴于M,PN⊥x轴于N,得出四边形PMON是正方形,推出OM=OM=ON=PN=1,证△APM≌△BPN,可对①进行判断,推出AM=BN,求出OA+OB=ON+OM=2,当当OA=OB时,OA=OB=1,然后可对②作出判断,由△APM≌△BPN可对四边形OAPB的面积作出判断,由OA+OB=2,然后依据AP和PB的长度变化情况可对四边形OAPB的周长作出判断,求得AB的最大值以及OP的长度可对④作出判断.【详解】过P作PM⊥y轴于M,PN⊥x轴于N
∵P(1,1),
∴PN=PM=1.
∵x轴⊥y轴,
∴∠MON=∠PNO=∠PMO=90°,
∴∠MPN=360°-90°-90°-90°=90°,则四边形MONP是正方形,
∴OM=ON=PN=PM=1,
∵∠MPA=∠APB=90°,
∴∠MPA=∠NPB.
∵∠MPA=∠NPB,PM=PN,∠PMA=∠PNB,
∴△MPA≌△NPB,
∴PA=PB,故①正确.
∵△MPA≌△NPB,
∴AM=BN,
∴OA+OB=OA+ON+BN=OA+ON+AM=ON+OM=1+1=2.
当OA=OB时,OA=OB=1,则点A、B分别与点M、N重合,此时四边形OAPB是正方形,故②正确.
∵△MPA≌△NPB,
∴四边形OAPB的面积=四边形AONP的面积+△PNB的面积=四边形AONP的面积+△PMA的面积=正方形PMON的面积=2.
∵OA+OB=2,PA=PB,且PA和PB的长度会不断的变化,故周长不是定值,故③错误.
,∵∠AOB+∠APB=180°,
∴点A、O、B、P共圆,且AB为直径,所以
AB≥OP,故④错误.
故答案为:①②.【点睛】本题考查了全等三角形的性质和判定,三角形的内角和定理,坐标与图形性质,正方形的性质的应用,关键是推出AM=BN和推出OA+OB=OM+ON14、.【解析】
先通分变为同分母分式,然后根据分式的减法法则计算即可.【详解】解:原式.故答案为:.【点睛】此题考查的是分式的减法,掌握分式的减法法则是解决此题的关键.15、85【解析】
根据中位数求法,将学生成绩从小到大排列,取中间两数的平均数即可解题.【详解】解:将六位同学的成绩按从小到大进行排列为:75,75,84,86,92,99,中位数为中间两数84和86的平均数,∴这六位同学成绩的中位数是85.【点睛】本题考查了中位数的求法,属于简单题,熟悉中位数的概念是解题关键.16、【解析】
(1)直接利用分式乘方运算法则计算得出答案;(2)直接利用分式除法运算法则计算得出答案.【详解】(1)()2=;故答案为;(2)==.故答案为.【点睛】此题主要考查了分式的乘除法运算,正确掌握运算法则是解题关键.17、x≤1且x≠﹣1【解析】试题分析:根据二次根式有意义,分式有意义得:1﹣x≥0且x+1≠0,解得:x≤1且x≠﹣1.故答案为x≤1且x≠﹣1.考点:函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.18、-【解析】
由方程有两个实数根,得到根的判别式的值大于等于0,列出关于k的不等式,利用非负数的性质得到k的值,确定出方程,求出方程的解,代入所求式子中计算即可求出值.【详解】∵方程x2+kx+34∴b2-4ac=k2-4(34k2-3k+92)=-2k2+12k-18=-2(k-3)∴k=3,代入方程得:x2+3x+94=(x+32)解得:x1=x2=-32则x12017x故答案为-23【点睛】此题考查了根的判别式,非负数的性质,以及配方法的应用,求出k的值是本题的突破点.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)A(﹣1,﹣6);(1)见解析【解析】试题分析:(1)把每个坐标做大1倍,并去相反数.(1)横纵坐标对调,并且把横坐标取相反数.试题解析:解:(1)如图,△A1B1C1为所作,A(﹣1,﹣6);(1)如图,△A1B1C1为所作.20、(Ⅰ);(Ⅱ)①至少要购进20件甲商品;②售完这些商品,则商场可获得的最大利润是2800元.【解析】
(Ⅰ)根据总利润=(甲的售价-甲的进价)×甲的进货数量+(乙的售价-乙的进价)×乙的进货数量列关系式并化简即可得答案;(Ⅱ)①根据总成本最多投入8000元列不等式即可求出x的范围,即可得答案;②根据一次函数的增减性确定其最大值即可.【详解】(Ⅰ)根据题意得:则y与x的函数关系式为.(Ⅱ),解得.∴至少要购进20件甲商品.,∵,∴y随着x的增大而减小∴当时,有最大值,.∴若售完这些商品,则商场可获得的最大利润是2800元.【点睛】本题考查一次函数的实际应用及一元一次不等式的应用,熟练掌握一次函数的性质是解题关键.21、(1)见解析;(2)见解析【解析】
(1)求出EF∥AC,根据EF=AC,利用平行四边形的判定推出四边形ACEF是平行四边形即可;(2)求出CE=AB,AC=AB,推出AC=CE,根据菱形的判定推出即可.【详解】(1)证明:∵∠ACB=90°,DE是BC的垂直平分线,∴∠BDE=∠ACB=90°,∴EF∥AC,∵EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)当∠B=30°时,四边形ACEF是菱形,证明:∵∠B=30°,∠ACB=90°,∴AC=AB,∵DE是BC的垂直平分线,∴BD=DC,∵DE∥AC,∴BE=AE,∵∠ACB=90°,∴CE=AB,∴CE=AC,∵四边形ACEF是平行四边形,∴四边形ACEF是菱形,即当∠B=30°时,四边形ACEF是菱形.【点睛】本题考查了菱形的判定平行四边形的判定线段垂直平分线,含30度角的直角三角形性质,直角三角形斜边上中线性质等知识点的应用综合性比较强,有一定的难度.22、(1)证明见解析;(2)或.【解析】
(1)求出△的值,再判断出其符号即可;(2)先求出x的值,再由方程的两个实数根都是整数,且m是正整数求出m的值即可.【详解】(1)依题意,得,,.∵,∴方程总有两个实数根.(2)∵,∴,.∵方程的两个实数根都是整数,且是正整数,∴或.∴或.【点睛】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac的关系是解答此题的关键.23、,.【解析】试题分析:原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把已知等式变形后代入计算即可求出值.试题解析:===,∵a2+2a=9,∴(a+1)2=1.∴原式=.24、(1)购买A种花木40棵,B种花木60棵;(2)当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元.【解析】
(1)设购买A种花木x棵,B种花木y棵,根据“A,B两种花木共100棵、购进A,B两种花木刚好用去8000元”列方程组求解可得;(2)设购买A种花木a棵,则购买B种花木(100﹣a)棵,根据“B花木的数量不少于A花木的数量”求得a的范围,再设购买总费用为W,列出W关于a的解析式,利用一次函数的性质求解可得.【详解】解析:(1)设购买A种花木x棵,B种花木y棵,根据题意,得:,解得:,答:购买A种花木40棵,B种花木60棵;(2)设购买A种花木a棵,则购买B种花木(100﹣a)棵,根据题意,得:100﹣a≥a,解得:a≤50,设购买总费用为W,则W=50a+100(100﹣a)=﹣50a+10000,∵W随a的增大而减小,∴当a=50时,W取得最小值,最小值为7500元,答:当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元.考点:一元一次不等式的应用;二元一次方程组的应用.25、证明见解析.【解析】
易证△DAC≌△CEF,即可得证.【详解】证明:∵∠DCF=∠E=90°,∴∠DCA+∠ECF=90°,∠CFE+∠ECF=90°,∴∠DCA=∠CFE,在△DAC和△CEF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 海南软件职业技术学院《卫星导航定位原理与应用》2023-2024学年第二学期期末试卷
- 海北藏族自治州2025年三年级数学第二学期期末学业水平测试试题含解析
- 寒假安全教育2025年
- 彩印印刷工作总结
- 2024年四月抗爆空间隐蔽工程装修委托验收标准
- IT知识全面解析
- 江西省卫生类事业单位竞聘-财会类近年考试真题库-含答案解析
- 养生专业培训
- 江西省赣州市四校协作体2025届高三适应性调研考试化学试题含解析
- 天津市河西区2024-2025学年高三下学期数学总复习质量调查试卷一(解析版)
- 2022年4月自考02400建筑施工(一)试题及答案含评分标准
- 拟投入本项目的主要施工设备表
- 第七讲-信息技术与大数据伦理问题-副本
- 债权转让执行异议申请书范本
- 大姚大平地二期光伏项目环评报告
- 自考《兽医内科学与兽医临床诊断学》考试复习题库大全(含答案)
- 电工技师模拟考试题(附答案)
- (完整版)工程项目管理习题及答案
- 陕西省山阳县夏家店金(钒)矿床成矿地质特征及找矿前景分析
- 二年级《劳动最光荣》课件
- 旅游心理学个性与旅游行为课件
评论
0/150
提交评论