2024届内蒙古包头市东河区中考三模数学试题含解析_第1页
2024届内蒙古包头市东河区中考三模数学试题含解析_第2页
2024届内蒙古包头市东河区中考三模数学试题含解析_第3页
2024届内蒙古包头市东河区中考三模数学试题含解析_第4页
2024届内蒙古包头市东河区中考三模数学试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届内蒙古包头市东河区中考三模数学试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(共10小题,每小题3分,共30分)1.已知一元二次方程有一个根为2,则另一根为A.2 B.3 C.4 D.82.下列图标中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.3.下列函数中,二次函数是()A.y=﹣4x+5 B.y=x(2x﹣3)C.y=(x+4)2﹣x2 D.y=4.用6个相同的小正方体搭成一个几何体,若它的俯视图如图所示,则它的主视图不可能是()A. B. C. D.5.等式组的解集在下列数轴上表示正确的是(

).A.

B.C.

D.6.明明和亮亮都在同一直道A、B两地间做匀速往返走锻炼明明的速度小于亮亮的速度忽略掉头等时间明明从A地出发,同时亮亮从B地出发图中的折线段表示从开始到第二次相遇止,两人之间的距离米与行走时间分的函数关系的图象,则A.明明的速度是80米分 B.第二次相遇时距离B地800米C.出发25分时两人第一次相遇 D.出发35分时两人相距2000米7.方程x2﹣4x+5=0根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.有一个实数根 D.没有实数根8.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1处 B.2处 C.3处 D.4处9.计算36÷(﹣6)的结果等于()A.﹣6 B.﹣9 C.﹣30 D.610.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是()A. B.C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.不等式的解集是________________12.已知在Rt△ABC中,∠C=90°,BC=5,AC=12,E为线段AB的中点,D点是射线AC上的一个动点,将△ADE沿线段DE翻折,得到△A′DE,当A′D⊥AB时,则线段AD的长为_____.13.一个三角形的两边长分别为3和6,第三边长是方程x2-10x+21=0的根,则三角形的周长为______________.14.如图,AB为圆O的直径,弦CD⊥AB,垂足为点E,连接OC,若OC=5,CD=8,则AE=______.15.△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=_____.16.某地区的居民用电,按照高峰时段和空闲时段规定了不同的单价.某户5月份高峰时段用电量是空闲时段用电量2倍,6月份高峰时段用电量比5月份高峰时段用电量少50%,结果6月份的用电量和5月份的用电量相等,但6月份的电费却比5月份的电费少25%,求该地区空闲时段民用电的单价比高峰时段的用电单价低的百分率是_____.三、解答题(共8题,共72分)17.(8分)某工程队承担了修建长30米地下通道的任务,由于工作需要,实际施工时每周比原计划多修1米,结果比原计划提前1周完成.求该工程队原计划每周修建多少米?18.(8分)某超市预测某饮料会畅销、先用1800元购进一批这种饮料,面市后果然供不应求,又用8100元购进这种饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若两次进饮料都按同一价格销售,两批全部售完后,获利不少于2700元,那么销售单价至少为多少元?19.(8分)某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?20.(8分)如图,直线l切⊙O于点A,点P为直线l上一点,直线PO交⊙O于点C、B,点D在线段AP上,连接DB,且AD=DB.(1)求证:DB为⊙O的切线;(2)若AD=1,PB=BO,求弦AC的长.21.(8分)规定:不相交的两个函数图象在竖直方向上的最短距离为这两个函数的“亲近距离”(1)求抛物线y=x2﹣2x+3与x轴的“亲近距离”;(2)在探究问题:求抛物线y=x2﹣2x+3与直线y=x﹣1的“亲近距离”的过程中,有人提出:过抛物线的顶点向x轴作垂线与直线相交,则该问题的“亲近距离”一定是抛物线顶点与交点之间的距离,你同意他的看法吗?请说明理由.(3)若抛物线y=x2﹣2x+3与抛物线y=+c的“亲近距离”为,求c的值.22.(10分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.求证:BC是⊙O的切线;若⊙O的半径为6,BC=8,求弦BD的长.23.(12分)如图,AB是⊙O的直径,C是弧AB的中点,弦CD与AB相交于E.若∠AOD=45°,求证:CE=ED;(2)若AE=EO,求tan∠AOD的值.24.如图,在平面直角坐标系中,点O为坐标原点,已知△ABC三个定点坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).画出△ABC关于x轴对称的△A1B1C1,点A,B,C的对称点分别是点A1、B1、C1,直接写出点A1,B1,C1的坐标:A1(,),B1(,),C1(,);画出点C关于y轴的对称点C2,连接C1C2,CC2,C1C,并直接写出△CC1C2的面积是.

参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】试题分析:利用根与系数的关系来求方程的另一根.设方程的另一根为α,则α+2=6,解得α=1.考点:根与系数的关系.2、D【解析】试题分析:根据轴对称图形和中心对称图形的概念,可知:A既不是轴对称图形,也不是中心对称图形,故不正确;B不是轴对称图形,但是中心对称图形,故不正确;C是轴对称图形,但不是中心对称图形,故不正确;D即是轴对称图形,也是中心对称图形,故正确.故选D.考点:轴对称图形和中心对称图形识别3、B【解析】A.y=-4x+5是一次函数,故此选项错误;B.

y=x(2x-3)=2x2-3x,是二次函数,故此选项正确;C.

y=(x+4)2−x2=8x+16,为一次函数,故此选项错误;D.

y=是组合函数,故此选项错误.故选B.4、D【解析】分析:根据主视图和俯视图之间的关系可以得出答案.详解:∵主视图和俯视图的长要相等,∴只有D选项中的长和俯视图不相等,故选D.点睛:本题主要考查的就是三视图的画法,属于基础题型.三视图的画法为:主视图和俯视图的长要相等;主视图和左视图的高要相等;左视图和俯视图的宽要相等.5、B【解析】【分析】分别求出每一个不等式的解集,然后在数轴上表示出每个不等式的解集,对比即可得.【详解】,解不等式①得,x>-3,解不等式②得,x≤2,在数轴上表示①、②的解集如图所示,故选B.【点睛】本题考查了解一元一次不等式组,在数轴上表示不等式的解集,不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6、B【解析】

C、由二者第二次相遇的时间结合两次相遇分别走过的路程,即可得出第一次相遇的时间,进而得出C选项错误;A、当时,出现拐点,显然此时亮亮到达A地,利用速度路程时间可求出亮亮的速度及两人的速度和,二者做差后可得出明明的速度,进而得出A选项错误;B、根据第二次相遇时距离B地的距离明明的速度第二次相遇的时间、B两地间的距离,即可求出第二次相遇时距离B地800米,B选项正确;D、观察函数图象,可知:出发35分钟时亮亮到达A地,根据出发35分钟时两人间的距离明明的速度出发时间,即可求出出发35分钟时两人间的距离为2100米,D选项错误.【详解】解:第一次相遇两人共走了2800米,第二次相遇两人共走了米,且二者速度不变,

出发20分时两人第一次相遇,C选项错误;

亮亮的速度为米分,

两人的速度和为米分,

明明的速度为米分,A选项错误;

第二次相遇时距离B地距离为米,B选项正确;

出发35分钟时两人间的距离为米,D选项错误.

故选:B.【点睛】本题考查了一次函数的应用,观察函数图象,逐一分析四个选项的正误是解题的关键.7、D【解析】

解:∵a=1,b=﹣4,c=5,∴△=b2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0,所以原方程没有实数根.8、D【解析】

到三条相互交叉的公路距离相等的地点应是三条角平分线的交点.把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求.【详解】满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.如图所示,故选D.【点睛】本题考查了角平分线的性质;这是一道生活联系实际的问题,解答此类题目时最直接的判断就是三角形的角平分线,很容易漏掉外角平分线,解答时一定要注意,不要漏解.9、A【解析】分析:根据有理数的除法法则计算可得.详解:31÷(﹣1)=﹣(31÷1)=﹣1.故选A.点睛:本题主要考查了有理数的除法,解题的关键是掌握有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.2除以任何一个不等于2的数,都得2.10、C【解析】根据题意相等关系:①8×人数-3=物品价值,②7×人数+4=物品价值,可列方程组:,故选C.点睛:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】

首先去分母进而解出不等式即可.【详解】去分母得,1-2x>15移项得,-2x>15-1合并同类项得,-2x>14系数化为1,得x<-7.故答案为x<-7.【点睛】此题考查了解一元一次不等式,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.12、或.【解析】

①延长A'D交AB于H,则A'H⊥AB,然后根据勾股定理算出AB,推断出△ADH∽△ABC,即可解答此题②同①的解题思路一样【详解】解:分两种情况:①如图1所示:设AD=x,延长A'D交AB于H,则A'H⊥AB,∴∠AHD=∠C=90°,由勾股定理得:AB==13,∵∠A=∠A,∴△ADH∽△ABC,∴,即,解得:DH=x,AH=x,∵E是AB的中点,∴AE=AB=,∴HE=AE﹣AH=﹣x,由折叠的性质得:A'D=AD=x,A'E=AE=,∴sin∠A=sin∠A'=,解得:x=;②如图2所示:设AD=A'D=x,∵A'D⊥AB,∴∠A'HE=90°,同①得:A'E=AE=,DH=x,∴A'H=A'D﹣DH=x﹣=x,∴cos∠A=cos∠A'=,解得:x=;综上所述,AD的长为或.故答案为或.【点睛】此题考查了勾股定理,三角形相似,关键在于做辅助线13、2【解析】分析:首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长.详解:解方程x2-10x+21=0得x1=3、x2=1,∵3<第三边的边长<9,∴第三边的边长为1.∴这个三角形的周长是3+6+1=2.故答案为2.点睛:本题考查了解一元二次方程和三角形的三边关系.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.14、2【解析】试题解析:∵AB为圆O的直径,弦CD⊥AB,垂足为点E.在直角△OCE中,则AE=OA−OE=5−3=2.故答案为2.15、60°.【解析】

先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.【详解】∵△ABC中,∠A、∠B都是锐角sinA=,cosB=,∴∠A=∠B=60°.∴∠C=180°-∠A-∠B=180°-60°-60°=60°.故答案为60°.【点睛】本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单.16、60%【解析】

设空闲时段民用电的单价为x元/千瓦时,高峰时段民用电的单价为y元/千瓦时,该用户5月份空闲时段用电量为a千瓦时,则5月份高峰时段用电量为2a千瓦时,6月份空闲时段用电量为2a千瓦时,6月份高峰时段用电量为a千瓦时,根据总价=单价×数量结合6月份的电费却比5月份的电费少25%,即可得出关于x,y的二元一次方程,解之即可得出x,y之间的关系,进而即可得出结论.【详解】设空闲时段民用电的单价为x元/千瓦时,高峰时段民用电的单价为y元/千瓦时,该用户5月份空闲时段用电量为a千瓦时,则5月份高峰时段用电量为2a千瓦时,6月份空闲时段用电量为2a千瓦时,6月份高峰时段用电量为a千瓦时,依题意,得:(1﹣25%)(ax+2ay)=2ax+ay,解得:x=0.4y,∴该地区空闲时段民用电的单价比高峰时段的用电单价低×100%=60%.故答案为60%.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.三、解答题(共8题,共72分)17、该工程队原计划每周修建5米.【解析】

找出等量关系是工作时间=工作总量÷工作效率,可根据实际施工用的时间+1周=原计划用的时间,来列方程求解.【详解】设该工程队原计划每周修建x米.由题意得:+1.整理得:x2+x﹣32=2.解得:x1=5,x2=﹣6(不合题意舍去).经检验:x=5是原方程的解.答:该工程队原计划每周修建5米.【点睛】本题考查了分式方程的应用,找到合适的等量关系是解决问题的关键.本题用到的等量关系为:工作时间=工作总量÷工作效率,可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.18、(1)4元/瓶.(2)销售单价至少为1元/瓶.【解析】

(1)设第一批饮料进货单价为x元/瓶,则第二批饮料进货单价为(x+2)元/瓶,根据数量=总价÷单价结合第二批购进饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)由数量=总价÷单价可得出第一、二批购进饮料的数量,设销售单价为y元/瓶,根据利润=销售单价×销售数量﹣进货总价结合获利不少于2100元,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.【详解】(1)设第一批饮料进货单价为x元/瓶,则第二批饮料进货单价为(x+2)元/瓶,依题意,得:=3×,解得:x=4,经检验,x=4是原方程的解,且符合题意.答:第一批饮料进货单价是4元/瓶;(2)由(1)可知:第一批购进该种饮料450瓶,第二批购进该种饮料1350瓶.设销售单价为y元/瓶,依题意,得:(450+1350)y﹣1800﹣8100≥2100,解得:y≥1.答:销售单价至少为1元/瓶.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.19、(1)50%;(2)今年该地至少有1900户享受到优先搬迁租房奖励.【解析】

(1)设年平均增长率为x,根据“2015年投入资金×(1+增长率)2=2017年投入资金”列出方程,解方程即可;(2)设今年该地有a户享受到优先搬迁租房奖励,根据“前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万”列不等式求解即可.【详解】(1)设该地投入异地安置资金的年平均增长率为x,根据题意,得:1280(1+x)2=1280+1600,解得:x=0.5或x=﹣2.25(舍),答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得:1000×8×400+(a﹣1000)×5×400≥5000000,解得:a≥1900,答:今年该地至少有1900户享受到优先搬迁租房奖励.考点:一元二次方程的应用;一元一次不等式的应用.20、(1)见解析;(2)AC=1.【解析】

(1)要证明DB为⊙O的切线,只要证明∠OBD=90即可.(2)根据已知及直角三角形的性质可以得到PD=2BD=2DA=2,再利用等角对等边可以得到AC=AP,这样求得AP的值就得出了AC的长.【详解】(1)证明:连接OD;∵PA为⊙O切线,∴∠OAD=90°;在△OAD和△OBD中,,∴△OAD≌△OBD,∴∠OBD=∠OAD=90°,∴OB⊥BD∴DB为⊙O的切线(2)解:在Rt△OAP中;∵PB=OB=OA,∴OP=2OA,∴∠OPA=10°,∴∠POA=60°=2∠C,∴PD=2BD=2DA=2,∴∠OPA=∠C=10°,∴AC=AP=1.【点睛】本题考查了切线的判定及性质,全等三全角形的判定等知识点的掌握情况.21、(1)2;(2)不同意他的看法,理由详见解析;(3)c=1.【解析】

(1)把y=x2﹣2x+3配成顶点式得到抛物线上的点到x轴的最短距离,然后根据题意解决问题;(2)如图,P点为抛物线y=x2﹣2x+3任意一点,作PQ∥y轴交直线y=x﹣1于Q,设P(t,t2﹣2t+3),则Q(t,t﹣1),则PQ=t2﹣2t+3﹣(t﹣1),然后利用二次函数的性质得到抛物线y=x2﹣2x+3与直线y=x﹣1的“亲近距离”,然后对他的看法进行判断;(3)M点为抛物线y=x2﹣2x+3任意一点,作MN∥y轴交抛物线于N,设M(t,t2﹣2t+3),则N(t,t2+c),与(2)方法一样得到MN的最小值为﹣c,从而得到抛物线y=x2﹣2x+3与抛物线的“亲近距离”,所以,然后解方程即可.【详解】(1)∵y=x2﹣2x+3=(x﹣1)2+2,∴抛物线上的点到x轴的最短距离为2,∴抛物线y=x2﹣2x+3与x轴的“亲近距离”为:2;(2)不同意他的看法.理由如下:如图,P点为抛物线y=x2﹣2x+3任意一点,作PQ∥y轴交直线y=x﹣1于Q,设P(t,t2﹣2t+3),则Q(t,t﹣1),∴PQ=t2﹣2t+3﹣(t﹣1)=t2﹣3t+4=(t﹣)2+,当t=时,PQ有最小值,最小值为,∴抛物线y=x2﹣2x+3与直线y=x﹣1的“亲近距离”为,而过抛物线的顶点向x轴作垂线与直线相交,抛物线顶点与交点之间的距离为2,∴不同意他的看法;(3)M点为抛物线y=x2﹣2x+3任意一点,作MN∥y轴交抛物线于N,设M(t,t2﹣2t+3),则N(t,t2+c),∴MN=t2﹣2t+3﹣(t2+c)=t2﹣2t+3﹣c=(t﹣)2+﹣c,当t=时,MN有最小值,最小值为﹣c,∴抛物线y=x2﹣2x+3与抛物线的“亲近距离”为﹣c,∴,∴c=1.【点睛】本题是二次函数的综合题,考查了二次函数图象上点的坐标特征和二次函数的性质,正确理解新定义是解题的关键.22、(1)详见解析;(2)BD=9.6.【解析】试题分析:(1)连接OB,由垂径定理可得BE=DE,OE⊥BD,,再由圆周角定理可得,从而得到∠OBE+∠DBC=90°,即,命题得证.(2)由勾股定理求出OC,再由△OBC的面积求出BE,即可得出弦BD的长.试题解析:(1)证明:如下图所示,连接OB.∵E是弦BD的中点,∴BE=DE,OE⊥BD,,∴∠BOE=∠A,∠OBE+∠BOE=90°.∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论